가형 21번 ㄷ번 시험장에서 이렇게 풀었는데 올바른 방법인가요?
게시글 주소: https://9.orbi.kr/0001183480
일단 f(x)의 개형이 대충 보이길래 ( 0,-1 에서 x축과 만나고 두허근 , y=x와 2에서 접하는 4차함수 그래프? ) 그려놓구요
g(x)는 f(x)와 y=x 대칭이니까 그렇게 두함수를 같이 그려놓고 보니
f(x)-g(x) 가 x>0 인 부분에서는 x=2 에서만 잠깐 x축에 접하고 그외에는 전부 x축보다 위에 있는
상태이더라구요 그래서 어차피 l f(x)-g(x) l 는 꺾여 올라가는곳도 없겠다
f(x)-g(x) 는 어차피 다항함수겠다 해서 x=2 에서 미분가능 하다고 생각했는데
제대로 푼건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9시까지 입실인데….9:1분에 들어가도 입실 해주나요? 단대는 늦어도 들어가게 해주던데…
-
학원 알바용으로 빠르게 돌리려고 하는데 어려운거 쉬운거 상관없이 개념 설명 잘...
-
어제 생일이었음 2
초딩 때는 그냥 선물 받고 부모님이 갖고 싶은 거 사주니까 마냥 좋았음...
-
기차지나간당 2
부지런행
-
오래된 생각이에요
-
얼버기 2
좋은 아침
-
성대 복전 0
확정 점수는 아니지만 가채점 낙지 기준 성대 사회과학이 6칸, 인문과학이 7칸 정도...
-
기상 완료
-
춥고배고프다 2
밥줘...
-
이젠 이시간까지 안자고있네ㅋㅋ
-
밤샘해버렷네 4
으으
-
합격생중에 수리 틀린 경우도 있나요?
-
미친짓이겠죠?
-
심심해서 2
수분감 샀음 공통+미기확 전부 다 심심할 때마다 풀어야지 즐겁다!
-
김동욱쌤 기출 0
일클 + 연필통 하면서 기출까지 같이하려는데 추천하는 기출문제집있나요?
-
아이디드리면핑까해드립니다.
-
셋 중에 누가 제일 노래잘함?
-
삼반수에 대하여 1
(요약 있습니다!) 이건 제 얘기가 아니라 제가 아주 아끼는 친구 얘기입니다 (저는...
-
표점 뭐 134임? ㅋㅋㅋㅋㅋ 납득하기 어려운데
-
지금 일어난 게 아니라 아직 안잔 거임.. 몇주 뒤에 유럽여행 가는데 강제 시차적응 on
-
딱알았다 1
누누로는 골드탈출못한다 내가 무언가 해야하는구나
-
컨설팅 받을까요 14
올해 삼수째고 목표하던 대학 라인이 간당간당한 성적이라 작년 이맘때쯤보다 더...
-
얼버기 2
는 아니고 술먹고 이제 집들어가는중 헤헤
-
잔다 2
르크
-
패턴 정상화 시킨다
-
이러면 무슨 의미가 잇음
-
이주비용 다 갚고 집짓고 그냥 영락없는 한국인이네
-
얼버기 9
-
세상 답도ㅜ없이 문과스런 절 데려가주실 대학은요
-
제가 중학교 과정까지만 들어있고 고1 과정은 구멍이 많아 다시 해야하는 완전...
-
알맹이콘
-
제 재수삼수 최대의 적은 휴대폰이었음
-
잠이 안오뇨 1
인생 망햇뇨
-
기숙학원 사정상 못 가게 됬는데 혼자 어떻게 공부해야 할까요? (걍 과외 구해서...
-
제발. . . 지금 다니는 학교 뜨고 싶어요 ㅠㅠㅠㅠㅠ
-
집에서 독서실 다니면서 독재했는데 6월인가 7월쯤부터 풀어져서 새벽에 유튜브로 예능...
-
안녕하세요 예비고3 07입니다 원래 계획대로라면 2-2학기 내신때 다니던 학원에서...
-
했을 때 환산점수가 진학사랑 너무 차이가 나는데 대학교 그걸 믿어야 하는건가요?...
-
이젠 미적 80이 2일지도?가 되면 어떡하노 ㅆㅂ
-
사람으로 돌아갈 시간이다
-
주말에 좀 쉬어야지
-
그러기에는 늦었나.. ....?
-
ㅇㅈ 11
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
저도 이거 좀 헷갈리던데ㅠ
저도 이거틀림 ㅡㅡ
음. 개인적으로는 이렇게 풀었어요.. 우선 f'(2)=1이므로 g'(2)=1 이라는점 하나..
이를 이용해서 y=x를 x축으로 생각하고, 삼중근 갖는애랑 똑같은 형태라서 그냥 그렇게 생각해서..
예 그냥 x가 2일때요 각각 에프프라임2를 -a 로놓고 지프라임2를 -a로 놓고 빼도 0이죠.. ㅋㅋㅋ근데 그냥 눈으로봐도
x가 0이랑 2일때 0이되고 그사이는 0아래고 나머지는 0위고 하니까...
제가 푼 방법은요 이렇습니다
ㄱ은 생략합니다. 이때 부호 변화를 체크해주는것은 꼭 잊지 마시고요.
ㄴ은 역시 식의 전개를 통해 계산합니다.
이때 x=2가 삼중근인걸 간파해낼수 있습니다.
ㄷ은 y=x와의 교점인 f(x)는 2에서 삼중근임을 캐치해낼수 있습니다.
주어진 함수는 다항함수/증가함수이므로 역함수와의 교점은 y=x인 좌표.
이때 x=2에서 삼중근을 가지므로 미분이 가능합니다.
감사합니다,
만약 f'(2)가 1이 아니었으면 미분불가능하게 되요.
아 그것도 파악했어요
적지를 않았네요..
ㄷㄷ
승동 진짜 선생님?