수학 칼럼(7) - 삼각함수 대칭성(수학1)-6월 모평 대비 어썸&랑데뷰 모의고사 탑재
게시글 주소: https://9.orbi.kr/00030524286
2021학년도 6평대비 어썸-랑데뷰 가형.pdf
2021학년도 6평대비 어썸-랑데뷰 나형.pdf
우선 6월 모의평가 대비 배포 모의고사를 존경하는 이투스 정현경 선생님과 함께 제작하였습니다.
6평 대비 어썸&랑데뷰 모의고사 가,나형입니다.
어려운 3점 및 4점 문항들은 기출문항 변형으로만 구성하였습니다.
그동안 기출을 얼마나 열심히 풀어왔고 분석하였는지 파악할 수 있는지 테스트해 본다는 의미로 시험 쳐 보시길 바랍니다. 물론 6평 대비로도...가형 30번은 6평 범위에 살짝 벗어났지만 중요한 문항이라 배치해 뒀습니다.
어썸 수학 정현경 선생님께 감사함을 전합니다.
그럼 칼럼 시작하겠습니다. 말로 풀어서 설명하면 간단하고 쉬울건데 글로 적어보니 복잡해 보이네요.
코로나19로 인해 2020년 4월에 치러야 할 4월 경기도 교육청 모의고사가 5월 21일 치러졌었죠.
그 시험
2020년 4월 교육청 가형 21번에 관한 이야기를 진행해 보겠습니다.
우선 다음 문제를 보겠습니다.
수학1 문제가 아닌데?
그럼 미적분 문제인가?
풀이를 다음과 같이 한다면 미적분 문제라고도 볼 수 없습니다. [곱을 합차로 고치는 공식이용]
그런데 저는 수학1 과정으로 충분히 풀수 있다고 생각합니다. (n등분한 모든 코사인 합은 0이다는 조건이 있어야 겠네요. 착가하였습니다.ㅜ 벡터의 합이나 합차를 곱으로 고치는 공식을 이용하면 증명할 수 있습니다. 수1과정으로는 홀수 등분일 때가...우선 그렇게 조건을 달겠습니다.)
삼각함수 정의에서 cosΘ, sinΘ는 알고 있습니다. 그것을 단위원의 점에서 x축 까지 거리, y축까지 거리로 생각하겠습니다. Θ의 크기에 따라 양,음은 따지고요.
원주를 n등분한 점을 원주위에 나타낼 때, n의 값이 커질 수록 n등분 하기 어려워 점을 나타내기 곤란합니다.
그래서 그 점을 나타내는 방법부터 체계화 해 보겠습니다.
n이 홀수 일 때와 n이 짝수일 때 원주 위에 점을 찍는 방법은 다음과 같습니다.
n이 홀수 일 때
위에 예를 든 17등분 점들을 직접 그려 보시길 바랍니다.
n이 짝수일 때
위에 예를 든 18등분 점들을 직접 그려보시길 바랍니다.
그럼 각 점들의 대칭성을 이렇게 파악할 수 있습니다.
특히 n이 짝수일 때는 다시 두가지 상황으로 나뉜다는 거...기억하도록 해요.
이런 성질을 이용하면 cos에 관한 다음 덧셈식이 성립함을 알 수 있습니다.
밑에 =1 오타 입니다. =0
위에서 언급했듯이 모든 n등분 된 코사인 합은 0입니다.
sin은 별 의미가 없겠죠...항상 x축 대칭이니 전체합은 0
일부의 합은 계산 불가
이 성질을 이용하면
cos(0)+cos(2pi/3)+cos(4pi/3)=0
cos(0)+cos(2pi/4)+cos(4pi/4)+cos(6pi/4)=0
cos(0)+cos(2pi/5)+cos(4pi/5)+cos(6pi/5)+cos(8pi/5)=0
cos(0)+cos(2pi/6)+cos(4pi/6)+cos(6pi/6)+cos(8pi/6)+cos(10pi/6)=0
뿐만 아니라
cos(2pi/5)+cos(4pi/5)=-1/2
cos(6pi/5)+cos(8pi/5)=-1/2
cos(2pi/7)+cos(4pi/7)+cos(6pi/7)=-1/2
cos(8pi/7)+cos(10pi/5)+cos(12pi/7)=-1/2
이 성립함을 알 수 있습니다. n이 짝수일 때는 합이 모조리 0이라서 언급하지 않겠습니다.
그림 글 첫부분에 나온 문제의 풀이는?
여기도 오타네요. 첫줄 =0
입니다.
대칭성 성질만 잘 파악하면 쉬운 문제입니다!!
그럼 문제의 그 문제...4월 학평 21번
이 문제는 sin에 대한 얘기였습니다. 그래서 sin+sin+sin+...은 의미가 없어서 개수에 관한 문제가 되었다 봅니다.
대칭성만 잘 파악한다면 다음과 같이 풀 수 있겠습니다.
ㄱ. 참
ㄴ. (0,1)이 sin값에 포함 되므로 k가 짝수 중 4의 배수인 경우이다. 위 설명의 (3)-②의 특히부부-㉠
따라서 두 자리수 4의 배수는 22개
ㄷ.
n이 홀수 일 때는 n등분한 점들이
y축에 비대칭, x축에 대칭이고 sin은 각 점에서 x축 까지 거리이므로
x축 위쪽에 5개, x축에 1개 (1,0), x축 아래쪽에 5개 로 총 11개
따라서 n=11
n이 짝수 중 4의 배수일 때는 n등분한 점들이
y축에 대칭, x축에 대칭이고 sin은 각 점에서 x축 까지 거리이고
(1,0), (0,1), (-1,0), (0,-1)이 점에 포함되어 있으므로
x축 위쪽에 9개, x축에 2개 (1,0), x축 아래쪽에 9개 로 총 20개
따라서 n=20
n이 짝수 중 4의 배수가 아닐 때는 n등분한 점들이
y축에 대칭, x축에 대칭이고 sin은 각 점에서 x축 까지 거리이고
(1,0) (-1,0), 이 점에 포함되어 있으므로
x축 위쪽에 10개, x축에 2개 (1,0), x축 아래쪽에 10개 로 총 22개
따라서 n=22
이다. 따라서 합은 53(거짓)
이 문제에 대한 변형 문제 Quiz로 내면서 마무리 하겠습니다.
저는 랑데뷰 수학 황보백 선생입니다.
0 XDK (+10)
-
10
-
이거 큰 의미있는 건가요? 전체지원자를 봐야하는지 실제지원자를 봐야하는지 모르겠어요
-
원래 과탐 많이보던 근본 대학 어디감?
-
어디까지 돌고있나요...
-
이번주 주말부터할까 흠 대충 할 때가 된거같긴한데
-
수능/리트 모두 해당 1. 기출문제를 프린트한다. 2. 기출문제를 푼다. 3. 내가...
-
140몇에서 170몇으로 늘었던데 괜히 글보고 불안해지네 그래도 내가 중간은하겠지..
-
작년이랑 점수 같은게 사실은 오른거긴함… 그니까 인간 맞음
-
남자친구가 먼저 족발, 치킨 야만스럽게 뜯어주면 편하냐 아니면 혐오스럽냐,,,
-
휴 생수 없는줄 3
옆에 커플분들한테 여쭤봐서 겨우 찾았네
-
한지 백분위 97 사문 백분위 98
-
1년 반 정도 수학과외 받았는데 사적인 연락은 안했어도 수업할땐 꽤 친했었어요. 전...
-
성대가 불변으로 탐잘 구제해주는 거 아닌이상 작년이면 서성한갈 점수들고 중경외시 갈 수도 있을듯…
-
하니 사진 좀 있네 근본.
-
영어 어법 0
이제 고3되고 관계대명사 + 불완전, 접속사 + 완전 이정도만 알고 문법 용어같은거...
-
ㅜㅡㅠ
-
저한테 맞는 반영방식은 과탐 많이보는 방식인데 과탐 백준위91 96인데 불변이 유리한가요
-
영상 :...
-
건대 목표하는 자연계 확통러입니다. 수1 수2 개념이 안되어있어서 미적으로 표점...
-
경기도 남부 사시는 분들 인서울 대학 보통 통학하시나요? 편도로 1시간 20분정도...
-
가천대랑 인제대는 예비 받고 기다리는 중인데 아마 둘 다 될 거 같긴 합니다....
-
근데 낙지 왜 문과에 연대보다 고대 표본이 더 많음? 4
문과 수학못하고 국탐 잘하는거 아니였음?? 난 그래서 반영비보고 다 연세대 몰릴거같다고 생각했는데
-
자꾸 왔다갔다거림 하......
-
세종대vs충남대 5
대전 살고 동생 둘다 붙었는데 어디가 나을까요 내일까지 결정해야되는데 충대 가라는...
-
존나 성실하게 재깍재깍 올릴 거 같음? 아니면 강민철처럼 강의 밀리고 유기하고 그럴 거 같음?
-
제가 수학 과외를 하는데 이번에 개념을 처음 가르쳐 봅니다. 이 친구가 혼자 김기현...
-
ㅇㄷㄴㅂㅌ
-
한양이 물변표,,, 한양에 탐망들 모일거라 입결에 미친 성균관 입학처 지금 빨딱서서...
-
변표 0
국숭세단인아 라인에서 탐구 94 85면 불변표가 좋나요 아니면 물변표가 좋나요?
-
모고 보면 화작파트 다맞거나 하나 틀리는 정도인데 문제집 사서 풀어야할까요? 참고로...
-
나를 반겨주는거는 헬스장밖에 없다는거임
-
현역 22수능 재수 23수능 실패 군대에서 25수능 실패 2월 전역하고 수능보면...
-
99 85면 불리함?
-
어떻게든 서성한1등 하려고 정신이 나가있는거같음
-
있을까요?
-
표본분석 중인데 10명 뽑는 과인데 추합까지 해서 28명이면 미등록하는 애들...
-
중대 변표 3
언제쯤 나올까요? ㅠㅠ 물변일 확률이 높겠죠..
-
흠. 10
-
혹시 오늘 건대 수시 추합 합격자 확인하신분들 계신가요? 당연히 안 될거라 생각해서...
-
ㅈㄱㄴ
-
아.
-
의약계열로 쓸려고 하는디 1학년이랑 수상 수하 밖에 쓸 수 없네 ㅠ
-
캬 드디어
-
유기나노도 못가는건가....
-
탐구를 잘 봐서 큰일 난거 같은데 이거 한양대 붙을 수 있을까요?
-
근데 하다가 질려서 멈추는중
-
수시 경쟁률도 작년보다 높아졌더만 그냥 올해 수험생 수가 늘어난건가?
-
일정표 보니까 4월,6월,9월 의무휴가로 나가야된다는데 잠도 못 자는 건가요?
감사합니다.
와 정말 감사합니다!
감사합니다.
오타 있어서 수정했습니다. 그리고 cos합이 0이 되는 부분에 대해 당연하다 생각하고 있는 상태에서 글을 써 내려갔네요. 그 부분에 대해서도 글을 추가했습니다.
다음 부터는 좀 더 꼼꼼히 생각해 보고 글 작성토록 하겠습니다.
사진은 수정이 힘들어서 바로 위에 글남겼습니다.
역시 멋진 글입니다.^^