2012학년도 수능 수리가형 21번문제 풀이 좀 깔끔한거 없나요?
게시글 주소: https://9.orbi.kr/0003139868
메가스터디에서 기출 풀이해주는거랑 입시플라이기출문제집풀이나 인터넷 돌아다니는 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
-
뭘로 갈까요? 이번 수능 생지 31 인데 유전이 저랑은 너무 안맞는 거 같아서...
-
면접망침 멘탈 5
어제 면접 개망쳣는데 자꾸 그 장면이 반복재생됨 자살뛰러감 시발!!!ㅜㅜ
-
왜 조회수 높냐 0
슈냥 방송 안 켜있는데
-
현역 6(언매) 9(화작) 수능(화작) 원점수 100 1~2월에 단기과외 바짝 하고...
-
처음 느껴보는 따뜻함이다
-
넘비싼데 거의 팔십마넌돈아닌가여 저만큼의가치를함?
-
제목은 약간 어그로였고요ㅎㅎ 2~3등급 친구들은 물론 1등급 친구들까지 사탐으로...
-
꼬1기 1
숙1면
-
수행있었는데 내가 안했어 한순간에 남같이 돌변하더라 너무힘들어 지금도 울고있어...
-
제가 몸에 결함이 많아서 공익갈거같은데 1,2학년때 가려면 빡센곳 가야한다더라고요
-
잘나가봐야아반떼새삥...
-
반수하다가 10월에 런했는데 시대컨설팅 받을 수 있? 1
가채점 입력하래서 입력했는데 6789월 다니고 컨설팅 받을 수 있나요? 지사의 라인...
-
응애 나 아가 5
응애 나 (연대) 아(동) 가(족학과)
-
짭쪼오름 한거로다가~!
-
연애빼고시발
-
진짜 어지간히 망겜인가보네 그래도 진짜 재밌었다
-
추억이네요
-
여론보니 다른 사람들도 짜다고 생각하는구나
-
종강을 바란다
-
면접을 당차게 잘봐서 바로 붙은듯요 ㅎㅎㅎ 꿀팁 부탁.. 넘 떨림
-
확통1컷몇예상요 10
전94요
-
현우진 t오티에서 이번 수능 19번까지 25분안에 무난하게 풀면 26수능 풀어도...
-
미적77은 6
26뉴런 해야한다고생각함?
-
외대 가능할까요??어디 쓸지 추천 부탁드립니당
-
나만 요새 게임 노잼인가 나이 먹어서 그런듯
-
개정 시발점 2
15 개정 시발점 샀는데 이번 수능 보거든요 ㅜ... 22개정으로 또 사는게...
-
이번 수능에서 전체적으로 기대보단 못쳐서 중경외시? 갈거같습니다. 반수할거같은데,...
-
서성한 써보신 분들 13
언확쌍윤이고 메가 기준 백분위 90 93 1 97 98 인데요 진학사에서 성대 냥대...
-
나중에 시간되면 국어공부하면서 든 생각이나 태도 쭉 적어볼까요?
-
이미 씻어서 굉장히 고민됨...ㅜㅜ
-
침대 누웠더니 2
허리가 갑자기 아프네
-
참 좋은 말이야
-
생1 지1인데 둘다 버리고 사탐으로 사문 정법 생각중인데 이게 맞을까요?
-
다시는 그대와 같은사랑 없을테니 잊지않아요 내게 주었던 작은 기억하나도 오늘도...
-
옆구리만 시리네
-
기차지나간당 2
아프니까 잔다
-
총합 8등급 상승 성공한것 같습니다 평백 70 중반대에서 92.5~93.2까지...
-
거수투표가 왜문제임여?? 대충 말만들으면 좀 요상해보이긴 하는데 그렇다해도...
-
전반적으로 정답률 꽤 낮고 단일 문제가 역대급 정답률이라 만점자가 꽤 적을고같은데 …
-
ㅈㄴ 들어보고싶음,, 근데 수능판도 뜨고싶은데
-
미적은 다 12월 말 아님 1~2월이네.. 현강 개강이 그때고 업로드하는거 생각하면...
-
을 해보지만 먼가 물어볼게 없을듯
-
이걸 볼 때마다 1
https://orbi.kr/00068125009 먹튀하고파요
-
낮 2시에 자서 7시에 일어나고 새벽 4시까지 안 잠
전 작년에 저렇게 풀엇는데...
작년에 신승범쌤이 저런유형 나올거같다고 수해에서 강조해주셧슴 ㅇㅅㅇ
이거 얼마 전에도 어떤 분이 질문 올려서 누군가가 친절하게 대답해준 글이 있어요. 제 의견으로도 법선벡터로 푸는 게 가장 깔끔하고 직관적으로 들어오는 것 같습니다. 문제에 등장하는 면이 3개인데요, 그 중 두 개는 고정되어 있고, ABC 포함하는 면이 유동적이라고 볼 수 있겠지요.
ABC면적은 고정되어 있으니, ABC면과 면x-2y+2z=1 사이의 각도가 최소일 때를 묻는 문제이고요, 따라서 두 면의 법선벡터 사이 각도가 최소면 됩니다.
글로 읽으시면 헷갈릴 수도 있을테니 공간좌표에다가 그리면서 생각해보세요. yz평면의 법선벡터(1,0,0) 그려보시고요, ABC의 법선벡터는 (1,0,0)과 60도 각도를 이루어야 하니, 원점을 시점으로 ABC의 법선벡터를 그려보면 x축을 축으로 하고 원점을 꼭짓점으로 하는 원뿔의 밑면의 원주 위를 빙빙 도는 모양이 될거구요. 이 중 (1,-2,2)라는 법선벡터와 가장 각도가 작아질 때가 언젠지 보면 직관적으로 당연히 세 법선벡터가 한 평면 내에 있는 경우 중(2가지 경우인데, 그 중 하나이겠지요.)에서 일어나게 됩니다. 이 정도면 충분히 직관적이지 않나요..?
따라서 그 최소일 경우의 각도를 t라 하면, t = s-60도 (단, s는 (1,0,0)과 (1,-2,2)가 이루는 예각. cos s = 1/3)
cos t = cos s cos 60 + sin s sin 60 = (1/3) (1/2) + (루트8)/3 (루트3)/2 = (1+2루트6)/6
답은 1+2루트6. 이렇게요.
오 그러네요.. 감사합니다^^
x-2y+2z=1의 법선벡터 v1=(1,2,2)와 yz평면의 법선벡터 e=(1,0,0)은 고정되어 있습니다. 여기에 삼각형 ABC를 포함하는 평면의 법선벡터를 v2벡터라고 하면, 결국 원하는 정사영의 넓이의 최댓값은 v1벡터와 v2벡터가 이루는 각이 최대소일 때가 됩니다. 따라서 e벡터와 v1벡터, v2벡터를 시점을 일치시킨 후 v2벡터를 (v2벡터의 크기는 고정하고 각을 변화시키면 v2벡터는 e벡터를 포함하는 원뿔의 흔적을 남게게 됩니다. (나) 조건 때문에 v2, e벡터의 각은 일정)
따라서 v1벡터, v2벡터가 이루는 각이 최소가 되려면 e벡터와 v1벡터가 포함된 평면에 v2벡터가 놓여 있어야함을 알 수 있겠습니다.
감사합니다^^
저두 실제 시험장에선 법선벡터 두개로 비교해서
두 평면이 이루는 각 구하는 공식에 두 법선벡터 대입하고
잘 비비니까 보기에서 답이 될수 있는게 2(루트6)+1 밖에 없어서
겨우 풀었었네요 ㅋㅋ
그냥 삼각형이있는 평면 법선벡터를 (1,a,b)로 놓고푸시면 어처피 벡터비로푸는거니까 그냥 계산으로 나옵니다
아 이 풀이도 말씀드리려 했는데 까먹었네요.. 이렇게 풀어도 간단하지요. (고맙습니다..ㅎ)
(1,a,b) 랑 (1,0,0) 이루는 각도 60도니까 a^2 +b^2 =3 나오고요, 이 때
(1,a,b) 랑 (1,-2,2)가 이루는 각도의 cos값인 (1-2a+2b)/6의 최댓값을 구하는 문제니까,
다시 쓰면, a^2 +b^2 =3 일 때, (b-a)의 최댓값 구하는 문제입니다. 반지름 루트3인 원에서 기울기 1인 접선 그어보면 최댓값이 루트6 인 거 바로 나오지요. b-a=루트6 대입하면 cos최댓값이 (1+2루트6)/6 이라서 문제의 답을 얻습니다.
참고. 삼각형의 법선벡터가 (0,a,b)인 경우도 따져줘야 엄밀하긴 한데 결국 이 경우는 필요없습니다.
코시슈바르츠 부등식 말고 삼각치환 해보세요 그게 아마 출제의도 같네요
아니면 벡터의 내적이나 원과 접선 둘다 이용가능
작년 셤장에서 그냥 무식하고도 단순하게 푼것같네요...ㅠㅠ
삼각형 ABC와 yz평면이 이루는 예각의 크기는 60도이고
(1,-2,2) (1,0,0)이 이루는 각의 크기를 b라 놓을 때 cosb는 3분의1이 되죠..
삼각형 ABC와 평면 x-2y-2z=1이 이루는 각의 크기는 b+60 혹은 b-60이 되는데
정사영의 넓이가 최대가 되려면 예각 크기가 최소가 되어야 하므로
b-60이 되고...
6cos(b-60)을 구하면 답이 나오죠