수학 질문좀요
게시글 주소: https://9.orbi.kr/0003366599
X>0, Y>0이고 X+Y=2일 때, 1/X+4/Y의 최소값을 구하는 문제인데요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 16
saint님.. 종목추천좀..
-
ㅇㅈ 0
진짜 너무 못생김.
-
아빠가 쓰던 아이패드 준다길래 원래 갖고있던 갤탭 동생주려는데
-
모르는사람이없다랄까
-
메가 보니까 건대도 딸리는데 어디 써야할까요 ..
-
가대라고 정정하라고 개난리침
-
글리젠이 이래야지 ㅇㅇ
-
제곧내입니다
-
아이폰 아이패드 맥 사파리 연동이 잘 되어있어 끊김없이 즐길 수 있음
-
있는데 그 분은 재르비로 활동 중이라 말 안 할래요
-
생각보다사람들이 남얼굴에관심이많구나라고 생각했었어요
-
ㅇㅈ 4
하기엔 내가 너무 못 생김
-
스마일효정
-
뉴분감까지 끝내고 풀만항 수1 엔제
-
갑자기불현듯지나가는닉네임
-
사실상 모두가 고정닉 달고 활동하는 거라 함부로 잘 말 안 하는 듯.. 오래된 생각이다.
-
그래서 군대감
-
국어 정석민 수학 정병호 영어 이영수 쌍사 ebsi
-
벌써6일차네요
-
눈이 와 2
펑펑! 이 노래 슬슬 들릴 때가 됨
-
시간도 남아서 걍 수학상하 복습 할려는데 잘 맞는 인강쌤이 수학상하는 없고,...
-
비행기표 가격 <-- 앰뒤
-
“손가락 두개” 3
기억 나는 사람..?
-
19)님들 질문 있음 26
히토미 번호 가지고 오르비에서 히토미 티어표 작성하면 음란물 공유로 처벌받으려나
-
욕이 달린다 : 존잘 ㄱㅁ , 훈훈하네 : 평범 귀엽게 생겼다 , 착하게 생겼다 : 오르비언
-
충남도·대전시 행정통합 추진 선언…'슈퍼 광역도시' 만든다 1
(대전ㆍ충남=뉴스1) 이찬선 기자 = 충남도와 대전시가 행정구역 통합을 향한...
-
국어 비문학 지문을 이해없이 풀 수 있지 않을까요? 16
그동안 기출 보면서 푼 문제들 사실 생각해 보면 이해란게 전혀 필요하지 않은 것...
-
솔직히 거기서 거기같긴 한데
-
님들 이미지 3
-
선넘질받 23
대답 꺼려지는 질문 하시는분께는 천덬 드릴게요 신상X
-
질받 해볼게요 6
선넘도 ㄱㅊ 내일 논술 기념..
-
ㅇㅇ
-
최저만 되면 진짜 면접 평타만 쳐도 붙을만 한데 국어 진짜 제발
-
ㅇㅈ 10
에도 없다! 연세대학교 경영대학교
-
시청한 애니로 애니티어표 만들기가 취미인데 지금 1위 자리를 두고 봇치랑 빙과가...
-
특정되서 오르비사람들이 저의진짜모습을알게될까 무서워요...
-
서버 터진다 이런 건 걍 말도 안 되는 소리고 ㅋㅋ 걍 실친이 내 오르비 계정 알게...
-
왜 결말이 ㅂㅅ같냐 강연금같은 명작은 없는건가… 걍 럽코 적당한 거 보는게...
-
얼굴ㅇㅈ하면 8
념글 보내주나요?
-
댓글 20개 이상 찍히면 대존잘인거임 ㅇㅇ 물론 여성분들은 대존예까진 아니어도 그정도 찍히긴 함뇨
-
옯만추 딱 5번해봄 11
5명다 짤녀 닮은 미소녀였음
-
이공계 질문받아요 31
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
우하하 4
새르비 재밌누
-
한완수 ㄱㅊ? 5
재종 들어가기전에 한완수 하려는데 괜찮음? 수학 3따리 턱걸이라 걍 노베임 교과개념부터 할까요?
-
댓글 너무 달려서 오르비 서버 터질까봐.
-
념글보내줘 6
갈거업ㄱ잖아딱히
-
와 화력개빡세네 2
인증하면 세상사람들 다알겠다
-
삼수망한후기 16
삶에대해다시생각하게됨 사소한것에감사하게된 게아니고그냥계속화남 억울함 사수하고싶음...
X Y 둘다 변수인데 1/X랑 4/Y가 꼭 같아야 되지는 않는듯
산술기하식에서는 최솟값일지는몰라도
진짜 최솟값은 아닌듯..
전 두식 곱해서 산술기하 쓰라고 배웠네요..
그 이유가 뭔지 자세하게 알려주실 수 있으신가요?
바로 산술기하평균부등식을 쓰게 되면, 1/X+4/Y≥4sqrt(1/XY)가 되겠죠? X+Y=2를 이용해 식을 고치면 1/X+4/(2-X)≥4sqrt(1/X(2-X))가 되고요. 하지만 Y=4X일 때 본 식이 최솟값을 갖는 것이 아니라 "등호"가 성립하는 것입니다. (작성자님은 미분을 알지만) 미분을 모른다고 가정해봅시다. 그러면 부등식에 있는 두 식이 같이 증가할지 감소할지 어떻게 알겠습니까?
예시를 들면, 다음과 같습니다.
http://www.wolframalpha.com/input/?i=x%2B1%2Fx%5E2%3E2sqrt%281%2Fx%29
x>0일 때 x+1/x^2의 최솟값을 구해봅시다. 이때 산술기하평균부등식을 쓰면 x+1/x^2>=2sqrt(1/x)가 나오고, 등호는 x=1일 때 성립하는 것을 알 수 있습니다. 하지만 실제로 x+1/x^2의 최솟값은 x=(2의 세제곱근 중 양수)일 때 나옵니다.
음...님 말은 이해 하겠는데 다음부터 저런 식의 문제가 나오면 어떻게 생각해야 할지 잘 모르겠어요(사실 정석 수1 문제인데, 이 단원에서 산술기하평균 쓰는 문제가 굉장히 많았어요. 그래서 저는 저런 간단한 미분은 생각 못했어요.). 어떻게 생각해야 하나요?
그리고 답지에서 산술기하 쓰면 루트 안의 식이 상수가 되잖아요. 보통 다른 산술기하 문제에서도 루트 안의 식은 상수가 되고요. 그런데 제 산술기하 풀이에서는 루트 안의 식이 유리식이잖아요. 이게 님과 다른 분이 말하신 '등호는 성립하지만 최소값은 아니다.' 와 어떤 관련이 있나요?
산술기하평균 부등식에서 최솟값을 구하려면 오른쪽 식(두 평균 사이의 관계를 적용한 식)이 상수가 되도록 하는 것이 좋습니다. 그러면 등호 조건을 충족하는 x를 제외하고는 본 식이 모두 상수보다 크다고 볼 수 있기 때문입니다. 예를 들어,
http://www.wolframalpha.com/input/?i=1%2F%28x%5E2%2Bx%2B1%29%2B%28x%5E2%2Bx%2B1%29%3E2
1/(x^2+x+1)+x^2+x+1>=2에서 등호조건을 충족하는 x는 -1과 0이고, 이 이외에는 모두 2보다 크다는 것을 알 수 있습니다. 따라서 최솟값이 2가 됩니다.
그리고 루트안의 식이 유리식이 되었을 때, 작성자님이 처음에 얻은 부등식은 (Y를 X의 식으로 바꾸었을 때) X=2/5일 때 1/X+4/(2-X)와 4sqrt(1/X(2-X))의 그래프가 접한다는 것을 알려주지만, 1/X+4/(2-X)의 최솟값을 가르쳐주지는 못합니다. 이는 제가 앞에서 건 링크를 통해서도 알 수 있습니다.
설명이 좀 빈약해서.. 이해 안되는 것 있으면 질문해주세요~
다른 예를 들어 x>0일 때 x+1/x의 최솟값을 구하라고 할 때, 산술기하 평균 부등식을 이용하여 x=1일 때 최솟값이 2가 됨을 알 수 있습니다. 산술기하 평균 부등식에서 x+1/x>=2가 되는데, 등호는 x=1일 때 성립합니다. 즉, x>0이고 x가 1이 아닐 때, x+1/x>2입니다. 따라서 x=1일 때 x+1/x의 최솟값이 2라고 할 수 있는 것입니다.
여러 가지 풀이를 생각해볼게요.
(1) 코시-슈바르츠 부등식(혹은 산술-조화) 사용해서 (1/x + 4/y) (x+y) >= (루트1 +루트4)^2 --> (1/x + 4/y) 2 >= 9 --> 1/x + 4/y >= 9/2.
(2) 산술-조화 부등식은 (x+y) / 2 >= 2 / (1/x + 1/y) 를 뜻합니다. 이는 변수2개일 경우의 코시-슈바르츠의 특수한 경우로 해석될 수도 있고, 정리해보면 결국 산술-기하평균 부등식과도 동치이고요. 이는 변수가 3개일 때도 참입니다. 즉, (x+y+z) / 3 >= 3 / (1/x + 1/y + 1/z). 다시 쓰면 (x+y+z) >= 9 / (1/x + 1/y + 1/z). 이를 적용하면,
1/x + 4/y = 1/x + 2/y + 2/y >= 9 / (x + y/2 + y/2) = 9 / (x+y) = 9/2.
(3) 이렇게 눈치껏 쪼개는 작업이 어렵다고 생각되신다면, 다소 일반적인 '가중치' 산술평균-조화평균 부등식을 이용하시면 됩니다. (바로 아래)
u+v=1인 임의의 양수u,v와 임의의 양수a,b에 대해 ua + vb >= 1/(u/a + v/b) 가 성립. (등호는 a=b일 때 성립.)
참고. 이 가중치 산술-조화 부등식에 u=v= 1/2 대입하시면 원래의 산술-조화 부등식을 얻음.
1/x + 4/y = u *1/(ux) + v * 4/(vy) >= 1 / (u(ux) + v(vy/4)) = 1 / (u^2 x + v^2 y/4 )
여기서 주어진 조건 x+y=2를 사용하려면 마지막 식의 분모의 x,y 계수를 동일하게 맞추어주면 됩니다. 즉, u^2 = v^2 /4. u = v/2.
u+v=1이었으므로, u=1/3 , v=2/3.
따라서 u=1/3, v=2/3으로 잡으면 위의 부등식이 쭉 성립하고, 1/x + 4/y = ... >= 1/ (x/9 + y/9) = 9/2.
(참고로, 1/(ux) = 4/(vy) 일 때, 즉, x/3 = y/6 일 때, 즉, 2x=y 일 때 성립.)
(4) 1/x + 4/y = 1/x + 4/(2-x) = (3x+2)/(2x-x^2 ) = 1 / { (2x-x^2 )/(3x+2) } = -9 / { 3x-8 + 16/(3x+2) }
(3x+2로 9(x^2 - 2x) 를 나눈 몫이 3x-8, 나머지가 16)
= 9 / { 10 - (3x+2 + 16/(3x+2)) }>= 9 / { 10 - 2루트{ (3x+2) * 16/(3x+2) } } = 9 / { 10 - 2*4 } = 9/2
(산술기하평균부등식)
(5) (4)에 있는 식 1/x + 4/(2-x) 를 미분하여 최솟값 확인.
이 문제 등장하는 모든 변수는 양수입니다.
확인이 늦었네요.. 여러가지 풀이 감사합니다~