고2인데 죄송하지만 질문좀드려도 되나요?? 많은분들이 답해주셨으면
게시글 주소: https://9.orbi.kr/0003912186
오늘 수능시험지공개되는거 기다렸다가
집에서 수학b만 뽑아서 풀어봤는데
100분다썼는데도 92점나왔습니다..
의대진학이 목표인데 수학100은 기본이라고 하던데
저도 그렇게알고있구요..
3학년때 100점 가능하겠죠..?
그리고 이번수학b난이도 어땠나요?
29 30번 틀렸습니다 아이디어가잘안떠올랐어요..
29번은 대충근접했는데 30번에서 노가다하다가 시간다쓰는바람에
결국 둘다 못풀었습니다..
29 30 멋진풀이아시는분 풀이도부탁드려요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한완기 0
한완기 언제나오나요
-
막막함... 0
작년 54366 (화작 미적 생1 지1) 올해 33334 (선택과목 작년과 똑같음...
-
보통 메가T 메인커리 첫강의 개시일이 언제일까요?? 0
가령 현우진t 뉴런, 강민철t 강기본, 과학t 개념강의등등 12월은 돼야될까요??...
-
08입니다 국어 영어 조밥이구요 학평 3등급입니다 수학은 천재적인 재능이 있습니다...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
국어 모고를 1년치 다 사면 대략 몇개정도 오나요?
-
ㅈㄱㄴ
-
긍정적인 마인드로 356일 공부하기 5일차 오늘의 소확행 : 중국집 불고기잡채덮밥...
-
잘 살고 있다. 2
-
문학은 확실히 민철티한테서 얻어갈 게 많고 파이널이 승리쌤이 더 좋다는 말이...
-
일욜에 조진다
-
저도 이제 할머니네요
-
97 98 1 98 98 인데 지방약대 4~5칸 뜸..
-
그 수많은 밈들이 영상으로 어떻게 탄생될지 몹시 궁금함
-
1타강사가 미적만점자 700이하라고 인스타에 대놓고 올렸는데 그럼 현우진이 바보인거임..?
-
과탐 공부량 0
물1/지1 중에 노베기준 1등급 공부량 누가 더 많나요?
-
할거없다 1
지2 인강 들으러감..
-
실패수기 0
다시는 떠올리고 싶지 않은 기억이었지만 용기내서 글써봅니다..저는 지방에 살아서...
-
지금 오버워치 월드 파이널 시작했어요 옵치 리그 좋아하시면 보셈
-
유메 0
유메
-
동사는 일단 무조건할건데, 사문할지 세사할지 고민임 동사 세사가 시너지 좋다고하고...
-
맞팔하실분 0
헤헤
-
뭐함?
-
캬 2
-
컨설팅 할?말? 0
컨설팅 받고 가능성 높은 높과 쓰기(원하는 학과까지 가고 싶음) vs 컨설팅 없이...
-
기출 돌리고 삼극사기 사서 하는 것도 괜찮겠죠....? 일단 개념기출이 엄청 오래...
-
고려대 세종캠 약대 (지역인재) 경쟁률 64:1 미기확 다봄 미적 1등급 고정이고...
-
시작하기에 앞서 다 걸고 바이럴 아닙니다 ㅇㅇ.. 작수 독서 5틀 32m->올해 다...
-
<< 신 투투해야겠지?
-
이거보다 꿀일수가없음
-
재수 하려는 문과 학생이고, 올해 미적분으로 응시해서 선택에손 28 29 30...
-
캬
-
빙과 봇치 마녀의 여행 3대 레전드 결말 GOAT
-
2025 국어 언매 선택 원점수 91 97 97 백분위 99 96 99(추정) 인데...
-
라면먹고싶다 0
살찌니까참아야해...
-
수능 이때까지 3번봄. 중상위 사범대 다니는 중인데 메디컬 갈 생각으로 한 번...
-
대학 이름으로 드립을 치기 좋다는 건대 곧 훌리들이 몰려올 시즌이라는 건대 나한테...
-
과탐 탐구 선택 0
생1은 끌고 가고 지구과학은 도저히 못하겠어서 생2를 할려고 하는데 괜찮을까요
-
기상쌤 커리중 이것이 알짜기출이다 이 강좌 하면 따로 마더텅이나 자이스토리 기출 안해도 괜찮나요?
-
여자 기준이여
-
전자 쓰기엔 좀 힘들거같아서 자전으로 생각중인데 가능할까요?
-
46이라기엔 2점짜리 틀릴게 딱히 없었지 않나 14번이 3점짜린데 아무리봐도 45같은데
-
니말듣고두딸낳았대 니말듣고두딸낳았대
-
학과 잘못 고른 ㅂㅅ 취급 하긴 해 ㅋㅋ 메디컬은 신이 아니야 약은 그냥 뭐 할지...
-
도형 책 쓴다시길래 기대했는데 대학 생활이 바쁘신가 봄
-
고죠 사토루는 사실 살아있음
-
어차피 그 사이에 놀 것도 없고 놀아도 논 게 아닌 찝찝한 기분 이게 다 늘그니라...
-
외모 성격 성적인 거 같음. 맞는지는 모르겠지만. 동생 보니까 성격 + 성적 +...
-
이노우에야 안 돌아오냐 헌엑헌도 재연재하는데 에휴
29번 : (PQ^2-P1Q1^2)+(PQ^2-P2Q2^2)으로 보시면 결과적으로 두 평면의 법선벡터의 단위벡터와 벡터PQ의 내적값의 제곱의 합입니다.
두 법선벡터의 단위벡터를 h1, h2로 보시고 시점은 통일하신뒤 시점과 두 종점을 포함하는 평면을 생각하세요. 벡터 PQ는 그 평면과 평행해야 합니다. 이루는 각이 작을수록 코사인값은 커지니까요.
크기가 크면 클수록좋으니 4로 통일하시고 풀어재끼면 24나와요.
30번 : 먼저 조건 (가)를 이용해 이차함수를 구합니다. 물론 최고차항 계수는 아직 알수없습니다.
조건(나)로 넘어가서 먼저 접선의 접점의 x좌표를 t라고 두시고 접선방정식 구한뒤 (0.k)대입하세요
그리고 h(t)=k로 정리하시고 h(t) 그래프개형그린뒤 서로다른실근의 개수가 3개라는 조건을 이용하면 이차함수의 최고차항 계수가 나와요. 방정식 h(t)=k의 서로다른실근의 개수가 접선의 개수인 이유는 애초가 t값이 접점의 x좌표였기 때문입니다.