변곡점에서의 접선/변곡점에서의 대칭
게시글 주소: https://9.orbi.kr/0004397580
이 두가지 내용은 정말 교과서를 눈 씻고찾아봐도 없는데
다들 인강으로 보고 오시는 건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 2
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 1
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 0
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 3
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 3
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 1
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
알텍에서 쓰이긴하는데 증명과정을 쳐보니깐 대학과정이긴한데ㄱ고등과정에서 단순증명이 가능하더라고요.
한쌤이 즉각적인이해가 증 명보다 중요하다고하심.
참 학원 선생들이 신뢰가 안 가는게.....
한석원 선생 본인도 입이 닳도록 교과서 기출 외에 다 때려쳐라,
교과서에 나와 있는 것만 공부해라 전파하고 다니면서
정작 본인 수업에서는 교과서에서 전혀 나오지 않는 내용도 종종 다루고
숙제는 그렇게 저주하던 실력정석 풀기;
참;
"극점은 점대칭이다"라는 정의를 쓰시길래 인터넷에 찾아보니 대학과정 증명이라고 써있던데 제가 잘못찾았나보네요 죄송합니다
대학교에서도 그런거 적어도 제가 배운 범위에선 구체적으로 다루는 책은 못봤고요..
원래 변곡접선이 아닌 다른 교과서적 풀이가 가능한데 그렇게들 안푸시더라고요..
원래 곡선에서 만나는 점의 개수는 y=f(x)와 y=k의 교점이므로 방정식 f(x)=k를 구하는것과 동일하게 식구성을 할 수 있어요..
2012수능 19번이나 2014수능 30번이나 다 마찬가지 원리이고요..
접선의 방정식은 y=f'(a)(x-a)+f(a)인데 이것이 (0, k)를 지나니까
af'(a)+f(a)=k라는 방정식이 나오죠..세 점에서 만난다는 것은
y=k와 y=af'(a)+f(a)가 세 점에서 만난다는 뜻입니다.
교과서에서 대 주제로 반드시 다루고 있는 것이죠.. 방정식 f(x)=k의 실근은 y=f(x)와 y=k의 그래프를 가지고 해결한다고 나와있지요
그러면 명쾌하게 해결할 수 있을 것입니다.
참고로 y=f(x)와 y=k의 그래프를 가지고 해결하면 명쾌해지는 이유는,
수학 II 교과서에서 극대와 극소를 정의할 때 증감이 바뀌는 부분을 극값으로 정의했기 때문입니다.