-
시험이 실제로는 어려웠어도 다들 할만했다, 대충 1개빼고 다 풀었다, 무난했다 이런...
-
귀여워 5
-
수능 등급컷 탐구가 메가에서보다 한등급씩 올랏는데 뭐가 정확한겨? ㅠ 백분위도 10퍼나 차이나..
-
나란 미친새끼
-
언제 뜰지 아시는 분 있으신가요 찾아봐도 안나오네요 인강 듣고 싶은게 있는데
-
볼펜으로 쓰라는 게 존나 에바임 문제3쓰는데다가 문제2풀고 ㅋㅋㅋㅋㅋ
-
너무 자세하게 쓰나..
-
지문 읽다보니까 '아 일본 얃옹들 중에 모자이크 삭제라고 하는것들이 이건갑네 ai로...
-
여기서 미분계수 정의 사용하면 f=2x로 나오는 것 같은데 이렇게는 못 푸나요?...
-
논술 잘하는사람들은 14
수능수학은 그냥 100받음? 아무리봐도 수능수학보다 논술이 훨씬 어려운것같은데
-
폐에 문제 있나 싶어서 사진도 찍었는데 문제 없다함 진짜 ㅁㅈㄷㄴ 단순히 건조해서 그런건가.....
-
얼버기 11
-
아무 의미 없는건가요?? 8ㅁ8...
-
ㅈㄱㄴ 올해 기하 어땠나요
-
FAQ. 의대생들은 의사 망했다면서 왜 의대 자퇴 안 함? 36
1. 이미 학년이 차서 시간 매몰비용이 크거나 (이게 대부분임) 2. 수능 볼...
-
진짜 챔피언 삭제좀
-
논술말고 1
내년 수능준비하자~~
-
아직도너를 그렇게몰라
-
논술로 엄대엄 붙으니 걍 깨달아버림
-
하지만 성과가 나오지 않는다면 긍정적으로 살기 힘든 것 같아
-
가천의 7번 7
a값 별 듣도보도못한 숫자나오길래 닷지쳤는데 수능수학으론 도저히 대비가안되네 ㅋㅋㅋ
-
논술메타인가요 0
다들 합격기원
-
학원한번가고나니까 이것도재능의영역같음 범부는정시로가자
-
가천의 후기 11
일단 1번에 p,q 각각 108/11, 48/11 2번이였나 극한문제 그게...
-
고생했다 1
나자신 눈물겹다
-
정시로 메디컬 노리는데.. 수시도 쓰긴할거같아요… 근데 수시가 과탐 1과목은 꼭...
-
가천의논<< 4
리듬농구 최지욱 선생님이면 만점 가능할까 아마 분명 가능하실듯
-
악몽꿈 12
대충 머리가 두개 달렸고 하나는 맹꽁이, 하나는 금붕어인 핑크 괴물(몸은...
-
넌 어디까지 가길 원해~
-
집 보내줘 3
졸려요 엉엉
-
교수님들아 5
최소한 숫자정도는 좀 깔끔히 맞추는 성의를..
-
역시 폼 안 죽었구나
-
원서비는 냈으니까 문제지라도 보고 올까 말까 고민입니다 시간이 좀 아깝기도 하고..
-
예뻤어를 들을 때마다 떠오른다
-
다들 논술 얘기 열심히 하는중이라 뻘글 쓰기 무섭네 8
라면서 뻘글 쓰기
-
한 세문제 풀었나. 이제 의대 입시 쳐다도 안볼듯. 준비 안한 것도 있긴 했는데....
-
상방 의사보다 훨 높다 떼돈 벌자 가서
-
13일 12시 땡 하면 발표하는 건 아닐거 같은데
-
국어 노베 3
예비 고3 고1,2 모의고사 쭉 4등급입니다…. 인강 강사 추천해주세요
-
안봐서 모름뇨이...
-
의대 들어와도 의사 되려면 최소 6년 보통 11년 더 박아야 되고 그동안은...
-
중대 보시는분들 0
오늘 학교에 사람 많아요? 재학생 출입 가능한가
-
화장실 롯데타워뷰는 좋긴하더라 걍 전국서바 29번 30번 모음인데
-
가천대 의논 3
중앙의 다 풀었는데 여긴 그냥 웃음만 나오는 난이도네 ㅋㅋㅋㅋ 5.5~6문제 정확히...
-
이런 ㅅ발ㅋㅋ 2
가천의 논술붙기 vs 가천의 정시로뚫기 난 전자가 더 어렵다고본다 물론 둘다 실패함 ㅅㅂㅋㅋㅋ
-
급함 ㅜㅠㅠ하 어떡하지 유효기간은 지남 ㅠㅠ 졸업해서
-
애니 질문 2
님들 에반게리온 재밌음? 맨날 쇼츠에 레이 코스프레 뜨는데 진짜 캐릭터 너무...
-
어이가 없네 ㅋㅋ
-
성의는 다풀었는데 얘는 8문제중에 5개 풀었음
7ㅐ추
고등학교에서는 왜 저런 조합 노테이션을 안 쓰는 걸까요?
5252 어디까지 적을 늘리려고 그래
수능공부하는사람이 이걸 정독하면 도움이될까요? 훑어봤는데 이해하려면 한 한시간은 써야될거같아서
수능과는 아무 관련 없습니다. 차라리 위상자 칼럼을 정독하세요.
평소에 초월수는 대표적인 문자로 나타나는 pi, e 정도가 전부라 생각했는데 아닌 것도 꽤 있더라구요. 그리고 e*pi와 e+pi 둘 중 하나는 무조건 초월수라는 얘기도 신기했구요.
초월성이 뭐임
그 어떤 유리계수(정계수) 다항방정식의 해도 될 수 없는 복소수입니다. e를 영점으로 가지는 정계수 다항식은 못 만든다는겁니다.
정계수 대수방정식…으
너무 반가운 증명인데요..!
옛날에 중학교 때 파이가 왜 무리수이고 초월수인지 여쭤보았을 때,
담임 선생님이 과학고에 재직중이셨던 선생님께 요청해서 저 테일러급수를 통한 오일러 공식 증명이랑 린데만-바이어슈트라우스 정리랑 해서
총 8쪽 정도 되는 A4용지에 인쇄해서 주셨었거든요.
당시에 미적분을 몰라서 (심지어 책이 영어였어요!!) 읽다가 결국 '그래서 e^pi_i가 -1이라는 대수적 수가 나오기 때문에 pi가 초월수가 아니면 모순이라는 거지?' 라고 결론짓고 끝냈었어요...
그런데 이렇게 숨어있는 강호의 고수분들한테 이런 내용을, 심지어 한글로, 배울 수 있다니...
참 ... 이런 말 하면 늙은이같지만 세상이 참 좋아졌고, 점점 더 좋아지는 것 같아요!
어려워요