첨점 미분가능 관련질문!!!!
게시글 주소: https://9.orbi.kr/00056018482
f(x)가 x=a에서 첨점을 가질때
f(x)(x-a)는 x=a에서 미분가능
이라는데 왜 그런건지 모르겠어요
설명해주실 천사를 찾습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고2때 항상 문학에서 1틀해서 만점 못받았고 독서는 쭉 다맞았는데 문학 위주로 강사...
-
자야지 7
응..
-
중대 기공다는데 0
숭대 정보보호로 반수하는거 개병신이냐?? lg 유플러스 계약인데
-
같은 학교, 같은 과 오르비언 선생님이랑 옵스타도 맞팔중임..
-
어깨 삼각근 쪽에 꽃문신 하나 할까 싶은데 좀 그럴까요..? 의대생입니다
-
최적쌤 성격이 어떠신가요?
-
메가스터디 사문 2
메가패스 있으면 걍 사문은 윤성훈T 들으면 될까요 실모나 N제는 다른 분들거 좀 섞고
-
ㅇㅈ 6
-
짜파게티 4
-
이번에 과탐에서 사탐런 예정인 사람인데어준규 쌤 어때요? 지식밥차에서는 말이 귀에 박히던데
-
하... 헤어진 지는 한 두 달 정도 됐습니다... 진짜 전 그 친구한테 엄청 잘...
-
오늘한거 0
화2 주스 풀기.......(이게 끝이라고.....p)
-
다군이고 210명뽑고 계속 6칸 뒤쪽이었음..
-
올해 사문 7
올해 사문 전망이 어떤가요 한지랑 사문 중에 고민중인데
-
힙합추천 2
오이글리-1에서8 이거 ㄹㅇ ㅈ됨
-
@orbihaku
-
오르비를 0
심심해서 일년만에 다시 하니깐 꽤 재밌다
-
추억여행 떡밥은 어떨까요?
-
한번만 봐주세요.. 11
앞으로 이런 사진 다신 안 올릴게요 제가 판단을 잘못했어요 미안합니다 살려주세요...
-
욕 많이 먹어서 2
오래 살거같아요..
-
옯서운 사실 10
내가 벌점 0이다
-
사실이면 진짜 쉽지 않네…
-
그것은 바로 저의 {풀떼기}임 들어온 김에 구경하세요
-
우리 학교에 자칭 엉덩이 감별사가 있었음요. 그 친구는 쉬는시간마다 돌아다니며...
-
그럼 자야겠다 아까 2시간 잤는데 잠이 안오네
-
믿어요 여러분들
-
대체 왜
-
나는 병신호소인이었던거임...
-
오늘 애들끼리 밥 먹으면서 입시 얘기하다가 옯비 이야기 나와서 애들한테 모르는척...
-
혹시 르하임에서 재수 해보신분 계신가요? 아님 르하임처럼 고정석 없는 스카에서...
g(x)로 치환해서 미분가능성의 정의 써도되고 (×-a)^2을 인수로 가져서 결국은 같은 거지만요
감사합니다!!!
x=a에서 첨점을 가진다
= x=a에서 연속이지만 미분 불가능하다.
f x g가 미분가능한 함수가 될 조건 (단, g는 최고차항의 계수가 1인 일차함수)
f가 x=a에서 연속이지만 미분불가능하다.
=> f는 x=a에서 함숫값을 갖지만 미분계수가 다르다.
즉 f x g가 미분 가능하려면 f x g를 미분한
f'(x)g(x)+f(x)g'(x)가 x=a에서 좌극한과 우극한이 같아야 하는데 f'(x)가 좌우극한이 다르기에 f'(x)g(x)가 f'(x)의 x=a에서의 좌극한과 우극한이 다르게 나와서 f'(x)g(x)+f(x)g'(x)가 x=a의 좌극한과 우극한을 같게 해주는 방법(같아야 미분 가능한거니까)은 0을 곱해 0을 만드는 수 밖에 없다. 즉 g(a)=0이면 되기에 g(x)=(x-a) 가 됨
따라서 f(x)(x-a)는 x=a에서 미분가능함
만약 f가 x=a에서 첨점마저도 못가지는 불연속 상태(불연속 지점의 좌우극한이 발산하는 경우 제외)라면 같은 원리로 f(x)g'(x)도 0이 되어야 해서 (x-a)가 두개 필요. 즉, f(x)(x-a)^2 는 x=a에서 미분 가능
근데 당연하겠지만, f는 x=a가 아닌 지점들에서는 모두 미분가능하다는 전제가 있어야 한다는건 알고있죵
와
진짜
천국가세요
감사합니다
뉴런 벅벅 들으면 모두 해결