[박재우] 9평에 대한 분석과 저의 생각
게시글 주소: https://9.orbi.kr/00058231647
안녕하세요
오랜만입니다.
어제 시험 분석을 하고 촬영을 하느라 글을 올리지 못하고
오늘 공강 시간이 되어서야 글을 올립니다.
우선 시험치느라 고생들 많이 했습니다.
언제나 얘기하는 것이지만 난이도라는 것은 개개마다 다르기에 언급하지 않겠습니다.
평균적인 난이도에 대한 부분은 여러 회사들이 분석해서 낼 것 이니까
그것이 훨씬 공신력이 있을거라 생각합니다.
오늘 아이들 질문을 받고 생각한 부분을 한 번 써 보고자 합니다.
언제나 생각해야 하는 방향은 어떻게 하면 문제를 빨리 풀고
실수하지 않고 잘 마무리 하느냐라고 생각합니다.
긴 시간을 갖고 문제를 정확하고 논리적으로 잘 푸는 것도 중요하지만
시간이라는 제약조건 내에 다시 한 번 검토할 수 있는 시간을 확보하고
좋은 점수를 얻기 위하여 전략을 어떻게 해야 효과적일까에 더 중점을 둬야 한다고
생각합니다.
이제 문제를 풀 때 어떤 부분에서 힌트를 얻고 힌트로 말미암아 중간 과정을 얼마나 많이 줄일 수 있을건지
이번 9평 주요문제들을 보면서 약간의 도움 말씀을 드리고자 합니다.
더 좋은 방법은 얼마든지 있으므로 제 말이 진리인 것은 아니라고 말씀을 미리 드립니다.
11번 - 근의 개수가 나오는 문제는 그래프 개형이라는 것과 이차함수는 항상 대칭성을 가지고 있다라는 것이
포인트겠죠. 최근 나왔던 주제이기도 하구요. 보자마자 짝수차 실근의 곱이 -9 라는 것에서
그래프상으로 +- 3인 것을 바로 얻고 f(n)=8 이되는 한 근이 3이므로 나머지 하나는 대칭성에 따라 1이 된다
끝이겠죠
13번 - 길이와 각이 주어진 문제기 니오면 일단 주어진 위치를 먼저 파악하는 것이 중요합니다.
그리고 원에 내접하는 삼각형이 있으면 바로 사인 정리를 떠올리고 반지름 구하기를 떠올리면 됩니다
일단 점 C에서 선분 ED에 수선의 발 H를 내리면 위치가 주어진 길이와 각에 의해 선분 CD는 바로 해결됩니다.
각 D는 자동해결 그리고 반지름은 OD를 생각하고 OE를 a라 두고 삼각형 OED에서 코사인 법칙을
쓰면 해결됩니다. 별로 시간이 소요되진 않습니다.
일단 각과 선분 길이가 있는 곳의 위치를 팡가하면 거기서 문제를 풀어 나갈 수 있게 될 겁니다.
14번 - 최근에 면적과 원함수의 차에 대한 해석이 좀 보이고 있습니다. 이 번 육사 문제에서도 속도에서
움직인 거리와 위치 변화량에 차에 대한 문제가 나왔죠. 명칭만 다를 뿐 기본적으로 같은 개념 입니다.
당연 절댓값이 들어가 있으므로 부호에 대한 해석이 전체 해석의 대부분이 됩니다.
두 함수의 값이 같아진다는 것이 무엇을 의미하는 지 꼭 기억하시길 바라구요
ㄱ,ㄴ,ㄷ, 합답형 문제는 우선 질문 내용을 스캔하고 들어가시면 좀 좋아지는 데 모든 질문에
이면이라는 조건이 들어가 있으므로 각 케이스에 대해 해석하면 될 것입니다.
합답형은 사고가 서로 연관이 되어 있다는 것을 꼭 기억하고 ㄴ과 ㄷ은 서로 연결이 되어 있음을
생각하고 들어가면 ㄷ 역시 간단하게 해결이 됩니다.
15번 - 기대보다 떨어지는 문제로서 살짝 실망했던 문제입니다.
전형적인 대입 추론 문제입니다.
처음에 4k가 나와 있다는 것에 착안점을 두고 반복되어지는 현상이 결국 4회를 기준으로 변할 수 있다는
것을 에상하면 빨리 해결이 되겠습니다.
(가) 경우에서 a4가 시작이므로 a1, a2, a3는 5보다 큰지 작은지 경우만 나누어서 접근하면 되겠습니다.
20번 - 별로 언급할 내용이 없습니다.
극대. 극소 x값 차가 4/3 이기에 기울기 4인 접선이 바로 (1,1) 지난다는 것은 비율로 금방 찾을 수 있겠
습니다.
21번 - 일직선 상에 놓여진 점은 항상 x축으로 수선을 내려서 삼각비를 이용해서 닮음을 쓴다는 것 기본입니다
22번 - 일단 그래프 해석할 때는 극단적인 예를 하나 들어서 상황에 만제 변회시키는 것을 추천합니다.
문제가 실근에 대한 얘기를 하기에 삼차함수의 x축에 접하는 점이 존재하는 형태의 그림을 생각하고
x축을 위 아래로 옮기면서 해석하면 정말 빨리 끝나게 됩니다.
그리고 중요한 점인 극점 부분을 항상 중심으로 우선 해석하길 바랍니다.
대략적인 부분을 공통 문제 중심으로 해석을 해 보았습니다.
결국 시간 싸움이라는 것 잊지마시고 극값 같은 중요한 포인트나 개형을 중심으로 우선 해석하는 연습을
많이 하길 바랍니다.
본인이 열심히 해왔다면 충분히 발 헤쳐 나갈 수 있으므로 남은 가간은 문제를 중심으로 해석하는 연습을
꼭 많이 하시길 바라고 시간에 대한 압박감과에 대한 대처와 풀이에 대한 전략 수립을 위해
주변 학원들에서 진행하는 현장 모의고사는 꼭 참여해서 연습해두길 바랍니다.
물론 아주 잘하는 친구들은 그냥 자기가 하던 것을 그대로 계속하시면 되겠습니다.
빨리 입시판을 건너길 바라며 파이팅입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금까지 본 수학 사설/교육청/평가원 종합해보면 꽤 잘본축이라고 생각해보면 크게 아쉽진 않음
-
오르비식 마지노선은 미필삼수긴 한 거 같은데 ㄹㅇ '마지노선'인 느낌이라 해야 되나......
-
국어 풀면 난이도 차이가 아무리 커도 점수가 90-95에서 진동함 1
ㅈㄴ어려운 시험이어도 90은 넘는데 ㅈㄴ쉬운 시험이어도 95가 최대임
-
ㅈ댈 뻔했다 0
엄마가 요구르트 혼자 먹었냐고 물어보네 예전엔 안 물어보더니 오늘은 어떻게 안 거야
-
뿡댕모 특 0
내가 못하는건지 뿡댕시험지가 틀린건지..... 왜 안 풀리는 거냐구...... 글구...
-
PPI 0.4 컨센서스인데 0.2 떴을때 롱 진입 함 지수기준 snp 5770 이...
-
지구과학 이심률 0
이심률이 커지면 연평균 공전 속력이 작아지나요?? 근지점이나 원지점은 달라도 평균은...
-
제군들에게 묻겠다. 그대들은 조기발표를 원하는가? 만약 필요하다면, 오늘날 우리가...
-
붙어야만 한다구
-
국수는 아무리 쉬운실모여도 100뜨는 건 ㄹㅇ잘하는거인듯 4
난 수학 실모 100점 한번도 못받아봤고 96도 딱한번임
-
당연히 갑자기 꼴은 사람도 있기야 있는데 주변도르랑 커뮤 보면서 대부분 무난하게 잘 나와줌
-
모든 일본어 과목은 저주 받았어
-
슬프네
-
다군 반도체융합공인데 막차 가능성 있을까요? 일단 공학계열 붙긴 쓰는데, 반융공...
-
국어 죽어죽어 4
낄낄낄
-
아시는분 계실까요?? 혹시 764.34점은 예비 몇등일까요ㅠㅠ 알려주시면 쪽지로 사례하겠습니다
-
대학내용이 많이 내려와서 비추인가요??? 아니면 그냥 방향자체가 어긋나서 비추인가요???
-
어느정도임요? 결이 살짝다른거 알기는한데, 그냥 수능 몇등급이면 토익 몇점까지는...
-
너무 긴장됨 어떡하지 게다가 뽑자마자 교정치과 가서 교정기 껴야됨
-
받으면 예쁨뇨 여러분 합격인증 많이많이 올려주세요
-
맞팔구. 4
-
연대 가기로 흐흐 연의 연약 쟁취
-
말이 조기발표 없어요에서 정해진건 없어요로 changed
-
일본 고등학생 수학문제집 읽을 정도는 되나요???
-
>ㅇ< 5
:)
-
당당하게외쳐라 020304050607비켜라
-
의대 증원하니까 난리났는데 이건 만약 한다면 어케될까 의대만큼의 난리는 안 날 것 같은데
-
몇년전에 준비하려고 했으나 집안 사정으로 못하고 있다가 집안 사정이 좀 좋아지면서...
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
불가능
-
20대의 1/3 이상을 수능 공부에 쓰는 건 손해같음 18
손해가 맞는 것 같음 만약 군대도 안 가고 쌩으로 한 거라면 대학 가서 군휴학 2년...
-
좀 널널해지나?
-
상위권들은 ㅈㄴ 빨리 돌리겠지..........
-
진짜임
-
수준은 5~6등급 정도인데 강기본 고전시가까지 해서 다 듣고 복습했는데. 인강을...
-
독하다 독해
-
국수먹으러옴 1
화풀고 칼럼써야지 후...
-
그냥 개강후 학교행사에 가끔씩 얼굴 내비치면서 안면 트고, 적절히 몇 마디만 나눠도...
-
트럼프 "김정은은 이제 핵보유국…나는 그와 잘 지내" 1
북한을 '핵보유국'으로 명시적 언급 (워싱턴=연합뉴스) 김동현 특파원 = 도널드...
-
ㆍ
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][중앙대학교 커리어 가이드 (해룡당)] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
그게 낭만이니까 ㅇㅇ
-
4합5 탐구 평균이었는데 4합5 탐구1로 낮아졌네요 안할꺼지만 의대 사탐도 가능한가요?
-
그니까 이제 핑계를 대자면 조가 좀 많이 잘못 걸림뇨 나랑 동성인 동기가 조에 한...
-
전화추합안되나이거
-
땀 뻘뻘흘리면서 2
어우더워
-
두어번 해봐서 힘들다 혹은 더 이상 할 의욕이 예전만큼 없다는 걸 스스로가 느낀다면...
-
그럼 오티 가면 수시애들은 이미 지들끼리 친해진거임? 3
아오시발 정시 서러워서 살겠나
선생님 항상 존경합니다