[칼럼] 도형에 대한 기본적인 생각
게시글 주소: https://9.orbi.kr/00058390961
안녕하세요.
오늘은 수학 칼럼입니다. 주로 2~3등급 이하 학생 분들이 보셨으면 좋겠습니다.
상위권 분들은 도형에 약하시다면 가볍게 봐주세요..!
도형에 대해 떠오르는 것이 있어 간단하게만 정리해보려 합니다.
도형 문제는 어느 정도 풀이가 정해진 측면이 있습니다.
물론 수학을 잘 하시는 분은 워낙 많고, 간결한 풀이와 정말 기발한 풀이가 넘쳐 나지만
그럼에도 일반적인 관점에서 도형은 해야 할 것들이 고정되어 있는 편입니다.
다시 말해 2~3등급 분들이 지금 당장
수학 칼럼을 쓰시는 독존님이나 악어새님 등등..처럼 될 수는 없어도
저만큼은 하실 수 있을 겁니다.
전 문과거든요
도형 문제 학습에 있어서 가장 큰 애로 사항은,
"답지를 보면 알겠는데 어떻게 떠올려야 하지?"가 아닐까 싶습니다.
더군다나 답지를 본다고 실력이 확실히 느는 것도 아니고..
누군가 '이유'를 설명해줬으면 했습니다.
1. 삼각함수 값 하나를 준다면, 그건 모든 정보를 제시한 것이다.
제가 좀 헤매던 부분 중 하나입니다.
sin법칙과 cos법칙을 따로따로 물어보면
외접원 주니까 sin, 세 변 or 두 변과 끼인 각 주니까 cos
이런 식으로 쉽게 처리할 수 있었습니다. 이게 딱 쉬운 삼각함수 3점 문제겠죠.
그런데 조금만 어려워져도, 여기서는 sin, 저기서는 cos, 썼다가 안 썼다가 뭐 어쩌라는 건지 알 수가 없었습니다.
그런데 알면서도 활용하지 못했던 것이 있었다는 걸 어느 순간에 알게 되었죠.
하나의 삼각함수 값만 줘도, 적어도 삼각형 안에서는 모든 삼각함수 값을 다 준 것이나 다름 없습니다.
sin값을 줘도 cos값을 구할 수 있고, 그 반대도 마찬가지이죠.
그러니까
"sin값을 제시했지만 cos법칙을 활용하려면 값을 이리저리 바꿔야 한다!" 이게 아니고
애초부터 삼각함수 값은 다 주어져 있었다는 겁니다.
문제로 보겠습니다.
여기서는 sin BCD만 주었지만, 사실상 cos값도 같이 준 것이겠죠.
정말 당연한 이야기인데, 이걸 의도적으로 생각하고 풀면 안 보이던 게 보이기 시작합니다.
2. 보조선은 보조선을 긋기 위해 존재하는 것이 아니다.
이건 정말 중요한 이야기라고 생각합니다.
학생들을 가르치다 보면 '보조선을 긋는 것 자체'에 매달리는 경우가 많습니다.
하지만 보조선의 의미는 그런 데 있는 것이 아닙니다.
문제로 살펴보겠습니다.
이 문제의 마지막에서 저는 cos값을 찾으려고, 그리고 sin값을 찾으려고
그러니까 '직각삼각형을 만들기 위해' 보조선을 그었습니다.
2-1. 삼각형에서의 삼각함수 값을 활용할 생각도 해야 한다.
보조선과 연결되는 이야기인데
보통 sin, cos, tan의 정의 그대로를 기억하거나,
sin법칙, cos법칙 그 자체만 생각하는 경우가 많습니다.
그러나 우리가 중학교 때 배웠던 것처럼
삼각형에서의 삼각함수도 구할 줄 알아야 합니다.
피타고라스 정리와 연계되는 경우가 많죠.
위에 나온 문제에서도 마찬가지입니다.
3. 변형 공식은 암기해둘 필요가 있다.
sin법칙에서 나오는 공식이 았습니다.
저는 다음 세 가지 공식을 모두 외우고 있습니다.
cos법칙에서 나오는 공식이 있습니다.
저는 다음 두 가지 공식을 모두 외우고 있습니다.
워낙 문제를 많이 풀고,
또 수학 실력이 뛰어나서 안 외우고도 자유자재로 전환이 되는 사람은 모르겠지만
(사실 그런 사람도 머리 속에 이미 '외워져' 있는 거겠죠.)
일반적인 학생들은 "아니 누가 변형 공식을 무식하게 외움? 그냥 현장에서 식 변형하면 되지."
라는 생각을 많이 합니다.
그렇지만 이런 문제들이 나왔을 때 보자마자 풀이가 시작되려면
체화의 과정도 분명 필요할 겁니다.
삼차함수 비율 관계를 현장에서 증명하지 않는 것과 비슷한 맥락이라고 생각합니다.
특히 cos 공식 같은 경우, 저는 두 번째 공식을 훨씬 더 많이 쓰는 거 같네요.
솔직하게, '반드시' 암기해둘 필요가 있다고 말하고 싶습니다.
최상위권이 아닌 이상 머리 속에 넣어두지 않으면 바로 꺼내 쓰기는 어렵다고 생각합니다.
당연한 이야기이지만, 암기에 앞서 이해는 필수입니다.
4. '나만의 말'로 여러 가지 도구를 정립해두자.
많이 얘기했던 부분입니다.
'같은 cos값을 다른 삼각형에서 활용하기', '각을 넘기면 cos은 마이너스' 등
문제에 곧바로 써먹을 수 있도록
관련 개념을 나만의 말로 다듬어 놓는 것이 좋습니다.
5. 삼각형의 변과 각에 대한 명칭
이건 그렇게 중요한 건 아닌데
쉬운 문제에서 삼각형을 매번 그림으로 그려가며 푸는 학생들이 있어 간단하게만 넣겠습니다.
다들 배웠던 내용일 겁니다.
문제에서는 이런 식으로 활용될 수 있겠네요. 3번 파트에서도 똑같이 썼었죠.
더 생각나는 것도 있지만 기본적인 건 이 정도인 듯합니다.
읽어주셔서 감사합니다.
유익하게 보셨다면 좋아요 + 팔로우 부탁드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사 환산점수 한국사 가산점 반영 된거겠죠…?
-
??
-
정법 내년에도 하시나요 21
이거 너무 고였는데
-
난 찢칠라 응원해~
-
둘다 수시라고 했을 때 님들의 선택은,,??
-
특히 조성진 드뷔시 앨범커버
-
둘다 논술이고 연대는 붙는예비고 경북대는 붙었는데 어디가 나을까요?
-
인생이망해서 화는내고싶은데 나때문에망한걸아니까 화낼대상이나밖에없으니까...
-
잡담 태그를 안다는 사람들을 팔취할까 VS 차단할까
-
이미 재능이랑 노력 둘 다 가진 사람들이 다 해먹음 약간 김태희랑 결혼하기 vs...
-
전 둘 다 ㅈㄴ 못함뇨
-
이재명 2
이재명 싫어하는 이유들 정확히 알려주실 분 ( 진지하게 잘 몰라서 그럼 )
-
노력해보겠다는사람한테 재능타령하면서 포기하라고 하지 않고 노력해서 성공한사람의...
-
좋아요 화력이 이제..
-
제목 : ‘사탐런’
-
제발….,.,.,.,.
-
올해 그냥 브레턴우즈 시즌 2 나왔으면 난 성불이라고 아.
-
힘들어… 0
놀아도 노는 기분이 아니고… 날이 갈수록 에너지가 더 빠지는 느낌이네… 막막하고 내년도 두렵고 참…
-
Oh <-이 부분이 높다. 3옥도(C5)인데 여기서 힘을 주면(내가 하는 방법)...
-
국어 3-4진동 수학 2-3진동 영어 1-2진동 재종은 시대재종은 못 들어가서 강남하이퍼 생각중
-
아주대 48명 모집 실지원 91명 들어왔으면 표본 찬건가요?
-
공부할 때만 행복한 과목인데
-
바보가 쓴, 바보들을 위한 문학 가이드 (21학년도 9평) 4
들어가기에 앞서, 제 문학 실력의 가장 큰 기반이 되어주신 시대인재 N 재수종합의...
-
됐는데 할지말지 고민되네여
-
수능에서의 운은 0
일단 모의고사 쳤을 때 나오는 점수가 제각각이라는 것도 있지만 그건 답이 없는...
-
현 정부 의료개혁은 백지화될듯. 내년 봄 민주당 집권하면 당장 26년 의대정원...
-
진짜부럽네 의사면허 취소돼도 ^42만 구독자^
-
재능뿐만 아니라 환경까지도 엄청나게 중요하다고 생각하는데 뭐 어쩌겠음 내가 바꿀 수...
-
걍 나랑 다른사람도 많구나 하고 넘김 굳이 키배뜨고 싶지 않달까 어차피 설득될...
-
이번에 법학, 행정, 경행 합쳐서 44명 뽑는 법과 대학 예비 5번 이내로 떴는데...
-
원래 한의대붙어도 약대가실 생각이셨던거에요? 진학사 보니까 사탐한의대컷보다 인설약...
-
좋아 생각을 바꿔봤어 16
누군가의 말에 의하면 난 재능이 있으니 재능없는사람의 마음,생각, 상황을 이해하지...
-
난이도 어느정도 차이나는지 비교좀 부탁
-
진짜모름
-
저 요즘 롤 좀 치는듯
-
카이스트 말고 유지디 기준으로 궁금합니다
-
올해 수능 40만명 정도 봤다하면 20만명정도 진학사 삼? 앞으로 표본들 얼마나 들어올지 궁금해서
-
강대 s2 2
언미영생지 43332인데 강대 s2 성적순전형 가능할까요?? 조기반 갈 생각입니다
-
지금 남아있는 사람은 몇 명 없지않나
-
노력 재능 메타로구나
-
요즘 스키장 개장해도 슬로프가 뭔 2개밖에 안열려있노 ㅜㅜ 걍 자세 감만 잡아야할듯
-
그저 한결같은 wwwww
-
와저는재능없이노력으로해냇어요~~노력티비 이러는게 시름 걍 재능없엇으면 남들처럼...
-
ㅈㄱㄴ
-
좀만기다려
-
이제 전전중 서연고 서성한의 시대가 온다
-
난 머리 좋은 사람들은 공부할 때 어떨지 궁금하긴함 1
지능영역 4등급인데 난 내 머리가 딸린다는 생각은 물1할때 말곤 못느껴봤는데...
-
이과는 8
군대는 1학년 마치고 가기 2학년 마치고 가면 후회한다네요
-
인하랑 아주 고민하고 있어서 카대 에타에 물어봤는데 이게 옆그레이드라는 신박한...
선 좋아요 후 감상
4번은 도형은 물론 수학할 때 되게 중요한 마인드인 것 같네요
작년 9평 14번 ㄱㄴㄷ 문제에서도 식만 보면 되게 거창해보이는데 그냥 ‘(p,f(p))를 원점으로 옮겨’ 라고 번역만 하면 문제의 난이도가 한결 수월해지는 것처럼요
작년 9평 22번 평균변화율 극한식에서도 그렇고 특히나 함수 문제나 도형문제에서 포장지 한겹 쌓인둣한 문제가 많아진 것 같아요
결국 자기가 얼마나 이해를 해두었느냐가 되게 중요한 거 같아요
다음에는 나만의 말 칼럼을 한 번..ㅎㅎ
좋은 칼럼 감사합니다! 근데 한 가지 실수가 있어서요 1번 내용에서 선분 BC 길이 구할 때 2sqrt21을 2sqrt2로 쓰셨어요
이건 제 개인적인 팁이면서도 하나의 기본기인데 삼각형 결정조건과 그에 따른 삼각형의 해법(삼각형의 모든 내각의 크기,변의 길이를 구하는 법)은 모두 암기해두는게 좋습니다. 이때 삼각형을 풀고 싶으면 복잡하게 사인법칙이나 코사인법칙을 활용하는 것 보단 적당히 수선의 발을 내리는 풀이가 간편한데 이건 본인이 직접 모든 케이스들을 그려보면서 어떻게 수선을 내려야 풀리는지 연구해봐야 합니다. 예를들어 변이 세개 주어지면 세 내각은 모두 코사인법칙으로 구할 수 있고, 내각이 두 개 주어진 경우 세 내각이 주어진 것과 동치이므로 아무 변이나 하나 알면 삼각형이 결정됩니다. 이때는 수선의 발을 적당히 내리면 삼각형이 무조건 풀립니다.(안 풀리면 보조선을 잘못 그은 것입니다.) 내각 하나,변 두 개인 경우 끼인각이면 코사인 법칙을, 끼인각이 아니면 수선의 발을 내려서 풀면 됩니다. 끼인각이 아닌 경우 원칙적으로 삼각형이 결정되지 않고 두 개의 케이스가 존재하지만 보통 도형문제에서는 그림이 주어지므로 그림 상에서 수선의 발을 내려보면 삼각형이 결정됩니다. (삼각형이 예각삼각형인지,둔각삼각형인지로 케이스가 갈리기 때문에 그렇습니다.)
맞아요. 이번 13번에서도 루트10 구하는거
코사인법칙으로 다들 풀었던데 수선만 내리면 특수각이라 1:1:루트2 눈으로 봐도 나오죠..
사실 의외로 도형이 제일 발상적인 그런게 적은듯
시키는 대로만 슥슥하면.. 애들이 기하 하도 어려워해서 일부러 쉽게 내는걸수도 있긴한데
적분은 진짜 어려운 논술문제 같은거 보면 이걸 이렇게 치환해? 이런게 아직 잘 안보여요 ㅜㅜ
진짜 어려운 문제는 도저히 못 풀겠지만..