확률 문제 질문드립니다
게시글 주소: https://9.orbi.kr/0006132247
[1 2 3 4 5 6 '7 7' 8 9 10 ] 이렇게 11장의 카드중에서 3장을 꺼낼 때 가장 큰 수가 7일 확률은?
학교에서 선생님이 내주셨는데
(7C2/11C3)x1/2 이렇게 식 세워 풀어서
7/55 가 나왔는데 어떻게 틀린거고
올바른 풀이가 어떻게 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
-
부산시 현역 1
수필 3합4 과탐1개 250명 정도 맞췄대요.. 이 중에 내신 나보다 높은 애들은...
-
ㄷㄷㄷㄷㄷㄷ
-
답안지 걷는데 다들 3문제 다 꽉 채워있었음 오히려 1번에서 판가름날듯
-
냥대 상경 0
정답 배점 얼마나 됨?? 풀이과정 부분점수 다 있겠지 ㅠㅠ?
-
근데 이거 변표는 작년기준으로 계산하는거임??
-
지듣노 0
ほら あなたにとって 호라 아나타니 톳테 봐, 너에게 있어서 大事な人ほど...
-
파경 쓴사람 0
다 맞으신분?
-
윤도영 갬성으로 해야 하나요? 대충 들어보니 쉽지않은 성적대긴함
-
일단 저는 19군번 특기시험 전투지원, 사무관리 한자리수 등수 항공정보운영 군수해서...
-
냥대 상경 3번 6
점화식 어떻게 푸셨나요 다들 한양대 수리 논술 인터칼리지 상경
-
작년에 정시로 연세대 공대 입학한 ‘일개’ 학생이지만 여러 부분에서 연세대 입학처에...
-
파경 인칼쓸걸.. 싯팔!
-
아 식 완벽한데 2번이랑 3번에서 최솟값을 잘못구했네요… 이런 내일 중대 가야지..
-
물론 채점결과 나와봐야겠지만 이제 거의 안변하던데
-
확통을 잘하긴 하는데 실수가능성도 있고 표점이 너무 낮아서 바꾸려 함 2사탐이고...
-
77/27맞나여
-
논술 출발 0
칙칙폭폭
-
출처:한국교육개발원 인하대 과기대 아주대 가성비가 좋네요! 인하대는 이공계 비율이...
-
ㅈㄱㄴ
-
ㅎㅇㅌ 전 걍 혹시나 해서 보러감 ㅎ
-
무난하게 젤리케이스? 뭐 살지 모르겠넹
-
그냥 떨어지는건가욤..? 부분점수라도 노릴려고 한 두 줄 쓰고 냈는데.. 아무래도...
-
냥대 인터칼리지 3
고사장에 다들 얼마나 왔나여 제 고사장에는 37명 고사장인데 18-19? 옴
-
물2러분들 2
시작은 어떻게 했어요? 개념서 뭐 쓰나요?
-
재수 예정인 06입니다. 문과 전향 예정이라 인문, 상경 논술 준비해 볼까 합니다....
-
후기있나요
-
뭐냐
-
신기해 들어보고싶은데 후기좀여
-
화학에서 생명런 20
어떻게 생각하시나요? 생물 1도 해본 적 없는데 지학이랑 생명이랑...
-
나머지 다 맞고 수학 1번 x=6까지 구하고 최솟값만 틀렸는데 많이 힘들까요..ㅠㅠ
-
한양대 상경논술 0
원래 확통 하나씩은 내주던데 올해는 전혀없네 ㅋㅋㅋㅋ 아 그리고 문제느낌 약간 그냥...
-
문제 1. [제시문 1] A기업은 좀 후진 나라인 B국이랑 계약 체결했는데 얘네가...
-
이렇게 된 이상 외대로 간다
-
에반데
-
[문제1] 이항분포의 정규분포화 -> 상위 몇% 학생 수 구하기 [문제2]...
-
냥대 수논 2번 4
풀이 과정 알려주실 분?
-
난 진짜 순순하게 박력있고 멋진게 좋았던건데..
-
연고대는 다른 학교랑 다르게 문과 기준 편입영어 말고 논술로 뽑는다던데 혹시 이것도...
-
쉬웠나여 저는 허수라 2-2풀다가 시간 없어서 냈음..
-
얘 상황파악까지 다해서 3분? 정도밖에 안걸렸음.
-
기하런 하고 과탐공부시간챙기는게 맞겠죠?
-
나였으먼 1
그대 사랑하는 사람 나였으면
-
지금 진학사 5칸이라 좀 쫄림
-
수리 하나 못풀었는데 붙을 가능성 없나..
-
이게 맞지 50-60회는 너무 많긴 해
-
중학교때친군데 5년만에 만나여 이번에 저희학교 의대 붙을거같다고해서 만날예정인데...
-
너무 설렐거 같아
-
3합7,8은 맞출거같은데 탐구 가채점을 못써서.. 솔직히 좀 쫄려가지고 유시험...
14/55 맞나요?? 불안하네요 ㅠㅠ
먼저 8,9,10은 7보다 크니까 제가 원하는 배열에 포함되면 안되겠네요. 가장 큰 수가 7이어야 하니까 1~6은 막들어가도 상관없고, 7이 꼭 포함되어야겠네요.
저는 7 두개를 서로 다른 것이라 인정하고, 네모 세개그려서 풀었어요
ㅁㅁㅁ 여기서 7을 고정으로 선택하고 다같이 나열하면 되니까
7ㅁㅁ, ㅁ7ㅁ, ㅁㅁ7 모두 동일하니까 먼저 3
나머지 두칸에 7개의 숫자를 배열하는 가짓 수 7*6
그리고 7이 두개이니까 바꿔서 다시 2
그래서 2*3*7*6/11*10*9(11P3) 하면 14/55가 나와요
만약 조합을 이용해서 푼다면..
ㅁㅁㅁ 여기서 배열 가능한 가짓수는 11C3이고요
7을 하나 박아놓고 두칸을 채우면 되니까 7C2가 나오고, 7이 두개니까 2*7C2네요
그러면 확률은 2*3*7/3*5*11 똑같이 14/55가 나와요
맞나 모르겠네요 ㅠㅠ
밑에님 댓글보니까 제가 식을 잘못세웠네요.. 2*7C2로 하면 3개중에 7이 두개들어갔을때 7끼리 바꿔도 똑같으니 잘못된거네요 ㅜㅜ 밑에분 풀이가 가장 깔끔한거같고 ㅁ77일때 6C1, ㅁㅁ7일때 ㅁㅁ에 6개중에 2개 선택하니 6C2, 7끼리 바꿀 수 있으니까 2*6C2+6C1, 66이고 전체가 11C3이니 12/55네요 ㅜㅜ 박수칠님 감사합니다!!
네~ ^^
아아 그래서 2*7C2 가 안되는군요! 아랫분 풀이보고 이것처럼 식세워 봤는데 왜 안되나 고민했어요 ㅋㅋ
수학적 확률을 적용하기 위한 전제조건은
(1) 각 근원사건이 동시에 일어날 수 없다.
(2) 각 근원사건이 일어날 가능성은 같아야 한다.
입니다.
여기서 (2)에 부합하려면 7이 써진 2장의 카드가
서로 구별이 안됨에도 불구하고 서로 다른 카드로 취급해야 합니다.
그래서 두 장의 7을 7'과 7"으로 구별하면 근원사건 { 1-2-3 }, {1-2-7'}, {1-2-7"}이
나올 가능성이 같아지면서 수학적 확률을 적용할 수 있게 되죠.
다음으로 가장 큰 수가 7인 경우는
선택된 세 장의 카드에 7’이 포함될 때, 7”이 포함될 때, 7과 7” 모두 포함될 때가 있고
각 경우의 수는 6C2, 6C2, 6C1입니다.
따라서 구하는 확률은
(6C2 + 6C2 + 6C1) / 11C3 = 12/55
가 됩니다.
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
위에 설명했듯이 수학적 확률에서는
각 근원사건이 일어날 가능성이 같아야 하기 때문에
똑같이 생겨서 구별되지 않는 대상들을 서로 다른 대상으로 봐야하는
경우가 대부분입니다.
간단한 예로 상자 안에
1이 적힌 공이 한 개, 2가 적힌 공이 두 개, 3이 적힌 공이 세 개,
4가 적힌 공이 네 개, 5가 적힌 공이 다섯 개 있다고 합시다.
(각 공의 크기와 모양은 완전히 일치)
이 중에서 한 개의 공을 뽑았을 때
그 공에 3이 적혀있을 확률은 얼마일까요?
(1) 같은 번호가 적힌 공을 구별하지 않을 때
다음과 같이 5가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 1가지
3이 적힌 공이 뽑히는 경우 1가지
4가 적힌 공이 뽑히는 경우 1가지
5가 적힌 공이 뽑히는 경우 1가지
그래서 3이 적힌 공이 나올 확률은 1/5가 되죠.
하지만 1, 2, 3, 4, 5가 적힌 공의 개수가 달라서 각 공이 뽑힐 가능성이
모두 다르기 때문에 위의 조건 (2)에 어긋나서 틀린 답이 됩니다.
(2) 같은 번호가 적힌 공을 구별할 때
다음과 같이 15가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 2가지
3이 적힌 공이 뽑히는 경우 3가지
4가 적힌 공이 뽑히는 경우 4가지
5가 적힌 공이 뽑히는 경우 5가지
그래서 3이 적힌 공이 나올 확률은 3/15=1/5가 됩니다.
이게 답이죠.
1이 적힌 공부터 5가 적힌 공까지 모두 세 개씩 있다면
같은 번호가 적힌 공을 구별할 때와 구별하지 않을 때의 확률이 같겠지만,
대부분의 확률 문제에서는 외관이 똑같이 생겨서 구별할 수 없는 대상이라도
서로 다른 것으로 취급해야 합니다.
전체 11개중 3개 선택 -분모-
7은 무조권 있어야하니깐 미리 하나 뽑아놓고
나머지 두개 1~7까지 중 두개 선택 -분자-
(조합인 이유는 순서는 고려 하지 않아도 되요
예로들면 7.7.3 이나 7.3.7 은 같은 경우죠
그리고 문제를 읽어 보면 우리가 구해야하는게
선택한것중에서 7이 가장크기만 하면되요 목적을 ! 잊지마세요~)
그럼 7C2/11C3 으로 세우신 건가요?
다시 생각해보니깐 제가 판단을 잘못했어요 ..ㅜ죄송해요 윗분 처럼 확률 정의에 따라 7 .7 같게 보면 안되네요 분류로 하는게 정의에 맞고 분류라는 확률의 목적과도 맞네요
2c1•7c2/11c3