[이동훈t] 부분에서 전체 보기 (+231128미적분) 미적분
게시글 주소: https://9.orbi.kr/00062706480
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 수능에서
반복되는 테마인
부분에서 전체 보기
에 대해서 알아보겠습니다.
작년 수능 미적분 28번
한번 보실까요 ?
(이후의 글은
아래 문제에 대한
풀이의 일부를
포함하고 있으므로
문제를 풀고 나서
계속 읽기를 바랍니다.)
이 문제를 읽고 나서
바로 들어야 하는 생각은
다음과 같습니다.
(f는 쉽고)
g를
직사각형+삼각형으로 구할 것인가. (A)
아니면
큰 직각삼각형에서 작은 직각삼각형을 빼서 구할 것인가. (B)
어느 쪽이 더 쉬울 지를 결정해야 한다.
A의 풀이를
아마도 많은 분들이
선택하였을 것이고,
좀 더 와일드 한 성향의 분들은
B의 풀이를
선택하셨을 것입니다.
왜냐하면 딱 보기에도
S1+S2 가 아니라
S-S3 의 느낌이 드니까요.
A 의 풀이를 따르면
아래와 같이
보조선을 긋고,
직사각형과 직각삼각형의 넓이의 합을
구하면 됩니다.
이 풀이는 각과 길이를 결정하는 것,
극한 계산을 하는 것이
어렵지 않으므로
자세한 건 넘어가고요.
B 의 풀이를 적용하기 위해서는
아래와 같이 큰 그림을
볼 수 있어야 합니다.
위의 그림에서
두 직각삼각형
CQD, SRD 의 닮음비는
2 : 1+theta
이므로
문제에서 주어진 극한 계산은
다음과 같습니다.
(theta -> 0+ 일 때,
sintheta를 theta로 근사한 것입니다.)
B 의 풀이에서 보면 ...
직각삼각형에서의 닮음비가
출제 의도로 보입니다.
요컨대
이 문제에서도 반복된 테마인
" 도형의 넓이를 구할 때,
S1+S2 (부분+부분) 또는 S-S3 (전체-부분)
중에서 어떤 쪽을 택할 것인가 ? "
는 올해 수능에서도
100 % 출제될 것이므로
기출 문제를 가지고
충분히 연습해야 할 것입니다.
일요일 저녁에도
열공하는 당신이야 말로.
최후에 웃으리 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내일부터 주말권 이용하는데 다니시고 있거나 다닐 예정이신분 계신가요
저도 작년에 9모 13번 근사로 풀어서 맞췄던게 생각나네요
저도 수1도형 풀때 근사쓸때가 있네용
나중에 칼럼 써보고 싶은데..ㅋㅋ 9모 13번은 진짜 참신하게 풀어서 그럴 실력이 안되네요 확통 기출은 시작도 안해서 힝
저도 작년 9모 13번은 근사적으로 한 번 도전해 보겠습니다. :)