[이동훈t] 6모 미적분 28번과 난문 출제 경향
게시글 주소: https://9.orbi.kr/00063483466
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
요즘 입시판이
어수선한 가운데 ...
다음주 월(26일)에
최근 3년간 킬러 문제 발표한다며 ?
아주 또 ...
우리의 마음을 설레게 하는
빅 이벤트가 펼쳐질 텐데요 ...
킬러로 지목된 문제에 대한
다양한 해석이 난무할 것이고 ...
이건 하네 마네 ...
여기까지 출제되네 마네 ...
다른 과목은 모르겠고 ...
수학은 큰 의미 없는거
다들 아실거고 ...
교과서 (고1 포함),
평가원 기출,
교사경 기출,
EBS
이렇게 네 가지만 제대로 해도
1등급 문제 없거든요.
지금까지 그랬고 ...
앞으로도 그럴 거고 ...
아니 ...
지금 킬러 문항 관련 사교육 잡는 것도 ...
교육과정 안에서 충실하게 공부하면
즉, 교과서, 평가원 기출 제대로 공부하면
1등급 받을 수 있다는 말 아닌가요 ... ?
.
.
.
올해 3월 부터 대통령실에서
모의고사, 수능에서 킬러 출제하지 말라고
언급(더 나아가 오더)가 있었던 것 같고 ...
그런 맥락에서 6모 출제된 것인데요 ...
아하 ...
그런 맥락이 있었다면
미적분 28번이 왜 그렇게 출제되었는지
온전하게 이해가 되는거지 ...
그래서 오늘은 그 썰을 좀 풀어볼까 ...
그런데 뭐 ..
늘 그렇듯 ..
별거 없고 ...
내가 최근에 오르비에 올린 직전 글에서도
언급하긴 했는데요 ...
이번 미적분 28 번이
수능 출제에 있어서
어떤 변화의 흐름 속에 있는가 ...
그리고 그 흐름을 대표하는
문제일 수도 있다 ...
라는 생각을 해봅니다.
일단 미적분 28번 정답률 보실까요 ?
EBS 에서 가져온 건데 ...
실제 정답률(오답률)에서 아주 크게 벗어날 것 같지는 않고요 ...
순위 1 ~ 5 는 단답형 이고 ..
5지 선다 중에서는
13, 15, 28번이 엇비슷하게 정답률이 가장 낮고 ...
선택지별 비율이 아주 크게 차이나는 것은 아니여서 ...
찍어서 맞힌 분들도 많을 것으로 보이고 ...
5지 선다 중에서는 압도적으로 어려웠다.
라는 판단이 가능해 보이지요.
정답률만 보면 ...
26일 (월)요일에 킬러 예시로
선택될 수도 있어 보이긴 하는데 ...
만약 그렇게 되면 ...
출제자들이 좀 많이 당황할 수도 있다 ...
라는 생각이 듭니다.
왜 그러냐면 ...
28번 문제 다시 보면 ...
이 문제에 대한 풀이가 ...
(1) f(x) 방정식 유도 후 대칭성을 이용
[이동훈t] 2024 6월 28번 - 대칭성 풀이 (논리비약없음)
( 우리 대칭둥이들은 죄없다 ... 알제... ? )
(2) f(x) 방정식 유도 후 루트 안 초월함수의 최솟값 이용
(3) 사이값 정리 사용 후 좌, 우변의 최솟값이 같음을 이용
그 외에도 신박한 풀이들이 몇 개 더 있어 보이는데 ..
대충 3 가지 쯤으로 정리된것 같고 ...
나는 개인적으로 대칭성을 끝까지 밀어 붙인 풀이로 풀었는데 ...
그런데 f(x) 의 방정식을 유도한
(1), (2) 번의 풀이 모두
출제자가 열어둔 풀이이지,
권장 풀이는 아니라는
생각을 하게 된거지 ...
이번에 킬러 문항 사태를 보면서 말이야 ...
" 교육과정 외의 또는 지나치게 복잡도가 높은
킬러 문항은 배제 하면서도
난이도 변별이 가능한 문제만 출제한다. "
이런 식(?)의 오더가 있었던 거고 ...
(정확한건 26일에 가이드 나올거고 ...)
출제자 입장에서는
직접 출제 범위에서 더 꼬아서 출제하기 힘들어졌기 때문에 ...
간접 출제 범위 (중등, 고1)과 연계된 문제를
준킬러, 킬러로 출제할 수 밖에 없거든요.
이 경향성이 강화된 것은
제가 항상 얘기해 왔던 거고 ...
심지어 아래와 같은 글들도 쓴거고 ...
[이동훈t] 중등수학, 수학(고1)으로 다시 읽는 2022 수능 수학
[이동훈t] 중등수학, 수학(고1) 이 결합된 문제 다시 보기 (+2023 수능 수학)
아니 근데 ...
28번 이랑 고1 수학 이랑 무슨 관계이냐 ?
그게 또 (3) 번 풀이가 출제 의도인 것과 무슨 관계이냐 ?
이런 생각들이 들텐데 ...
저 문제에서 (가)를 보면 ...
여러분 ... 이차식이 포함된 도형들 ...
즉, 원, 무리함수, ....
교과서 본문 또는 연습문제를 보면 ...
정의역의 범위, 치역의 범위 구할 때 ...
실수의 성질 중에서
A가 실수이면
A^2 >= 0
이다. 라는 성질을 쓰게 되거든요.
예를 들어 원
x^2 + y^2 = 1
에서 x의 범위를 구할 때,
y^2 = 1 - x^2 >= 0 (즉, 양변 최솟값 모두 0)
-1 <= x <= 1
이때, 등호가 성립할 조건은 y=0 이다.
여기에 평행이동 결합시키면
도형
x^2 + y^2 + 2y = 0
의 정의역의 범위를 구하시오.
하면 ...
x^2 + y^2 + 2y + 1 = 1
(y+1)^2 = 1 - x^2 >= 0 (즉, 양변 최솟값 모두 0)
-1 <= x <= 1
이때, 등호가 성립할 조건은 y=-1 이다.
여러분 28번 (가)를 보면
딱 이 이차식 구조에
초월함수 붙인 거거든요 ...
그래서 미적분 28번은 ...
단순히 고1 수학이 간접 출제 범위로 결합된 게 아니라 ...
고1의 전형적인 풀이를 전체 풀이의 중심에 있기 때문에 ...
사실상 직접 출제 범위라고 봐도 무방하다고
나는 보는 거거든 ...
(28 번에서 초월함수의 최솟값 구하는게
어디가 어려운데 ...
직접 출제범위가 별거 아닌 문제인거지.)
내가 심지어 이런 글도 썼쟈나 ...
[이동훈t] 6모, 고1 수학은 사실상 직접 출제 범위 입니다.
이렇게 하면 별 것 아닌 문제 2개 결합해서
정답률 확 낮출 수 있으니까 ...
출제자들은 아마도 이런 지점을 노린거지 ...
EBS 오답률을 보면 먹힌거고 ...
28 번이 거의 3주 이상 논란이 된 이유도 ...
고1의 눈으로 바라보면 명쾌하지만
고3의 눈으로 바라보면 계속 찝찝하거든 ...
이거예요 ...
다른게 아니라 ...
(가)에서 주어진 등식의 양변에
+1 해서 완전제곱식 만드는게 ...
발상이 아니라니까 ...
고1의 전형적인 풀이를 적용한 거예요.
여기까지 생각을 하라는 거고.
여기까지 연습을 하라는 거지.
이게 쉬울까 ... ?
각자 생각들을 해보시고 ...
그리고 아래 문제도 좀 볼까 ?
아니 ...
솔직히 저게 어디 수학1 수열 문제야 ...
고1 도형의 방정식 문제지 ...
그런데 위의 문제와 달리
노골적으로 간접 출제 범위가
드러나지 않게 출제할 수도 있다는 거지 ...
지나치게 복잡도가 높은 문제를 출제하지 않아도
간접 출제 범위의 전형적인 풀이를 적용해야
빠르게 풀리도록 문제를 출제하면
된다는 것은 ...
뭐 ... 오래 전부터 출제자들이 사랑해왔던
방식인데요 ...
하 ... 이번 미적분 28 번처럼
풀이의 뼈대에 심으면 ...
잘 안보인다고 ...
.
.
.
뭐 .. .여하튼 ...
본문에서도 말씀 드렸지만 ...
교과서 (고1 포함),
평가원 기출,
교사경 기출,
EBS
이렇게 다 꼼꼼하게 하시면
시험 못보기도 힘들고요 ...
열공 하소서 ~!
ㅊㅊ
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 올해는 출시되지 않습니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
많은 고민을 하고 작성합니다. 저는 윤석열의 비상 계엄령 선포와 의대 증원 논란,...
-
어그로 죄송합니다 단과에 부엉이 라이브러리(목동) vs 잇올 가격이 비슷해서...
-
점장님 와이프 분이랑 같은 고등학교 출신이라 뽑힘 역시 인생은 학연이여
-
웅냐 1
좋은아침이에요
-
잘가라
-
트럼프 임기 동안은 우상향이 정배임? 재미로 몇만원 사봤는데 계속 최고가찍네
-
게이인가...? 진학사 8칸에 최종컷보다 10점 높은데
-
CC 위험군인가요? 스카이 대략 40명정도씩(재수생 포함) 가는 일반고 출신 입니다…
-
시험 공부 시러시러 30분만 할게요
-
올해는 제발 성불하고 다신 수능보고싶지않음...
-
고대 제발 2
하루라도 조기발표 해줘요 쫄려서 아무것도 못하겠어요
-
엠티같은거 안가고 혼자 다니고 싶은데 가능함? 문학이나 사회학 같은 학과
-
꽁똔 300범 3
8월에 160. 근로장학금받고 방금또 160범
-
그냥 그렇다고
-
증상이 어땠음 ??
-
조국 딸 조민, 뷰티 사업 대박…"일부 품절, 내년 돼야 재입고" 1
조국 조국혁신당 대표의 딸 조민 씨가 최근 클린뷰티 브랜드...
-
수능때정법선택하기?는 좀 아닌거 같은데 뉴스를봐야하나
-
ㅇㅇ,,,?
-
윤석열각하 0
드디어 부정선거에 대해 입을 열었다 그래서 부정선거 증거 있다는 거지? 없으면 걍...
-
변표 2
과탐이 문과로 지원하게 되면요 변표 적용됐을때 이득인가요 손해인가요? 가산점...
-
친구가 고3도 아니고 뭐 발표할 때마다 하나씩 올릴 거냐고 그러는데 별로냐
-
성대 추합 3
작년에 성대 자연과학계열은 왜이리 추합이 안돌앗엇나요..?
-
생년월일은 왜적는건가요 어차피 수험번호 안에 모든 개인정보 들어있는데
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
제발 붙었으면
-
내일월급날 7
돈내놔
-
황교안 “조국, 12일 교도소에 있을 것…그것이 국민의 뜻” 1
[파이낸셜뉴스] 황교안 전 국무총리가 조국 조국혁신당 대표의 대법원 선고일을 앞두고...
-
어떻게 12일이나 됐는데 하나도 안나오냐 하...
-
1. 근처 정신건강의학과 의원에 전화해서 외래를 예약한다. 2. 예약된 날짜에...
-
[서울=뉴시스] 박주연 기자 = 정국이 급변하며 정치테마주가 요동치고 있다. 윤석열...
-
[속보] 한동훈 "윤 대통령 담화, 사실상 내란 자백하는 취지" 2
[속보] 한동훈 "윤 대통령 담화, 반성 아닌 합리화…사실상 내란 자백하는 취지"
-
으하하
-
언화 통들어서 한자릿수대면 만표 160가까이 찍을까
-
정시로 넘어오지 마세요...표본 늘어나..
-
숭실 자전가면 컴공갈 것 같은데… 근데 걍 컴퓨터 문외한인데 이게 맞는지도...
-
작년 입결보면 이성적으로 갈수있을거같은데 진학사보면 4뜨고 어떤데는 3떠요 원래...
-
확실히 최초합해서 오티하고 새터가는게 네트워킹하고 대학에서 얻어가는 점에서 메리트가...
-
수학과 관련 질문, 개인적인 질문 등등 다 받아요
-
크아악
-
2칸 스나 ㅁㅊ 7
제가 성공해보겠습니다
-
국어 1
6,9,수능 셋 다 낮1이면 그래도 국어황은 아니고 국어왕 정도는 되긋죠?ㅋㅋㅋㅋㅋㅋ
-
하윤수 부산시교육감 당선무효형 확정… 2년 5개월 만에 불명예 퇴진(2보) 8
하윤수 부산시교육감이 대법원에서 당선무효형에 해당하는 선고를 받아 교육감 직을...
-
본인 21세, 삼수끝난 오르비언임 1,용돈 없고 어머니 카드로 되어있음, 모든 결제...
-
시험보느라 학교에 8시 출격해서 오후인줄 알았어요!
-
스불만 들어볼 예정인데 다른강의도 좋은가요???
-
어떻게 성공하신건지 궁금합니다
-
항상 패턴이 아 남성분이시네요? -> 저희가 꼼꼼한 분을 선호해서... -> 팡탈
-
아침오르비 특 0
읽는 사람은 많은데 글올리는 사람이 없음
-
정시 도와주세요 0
정시 무조건 안정권으로 쓰려면 어떻게 해야하나요? 정시는 처음이라 막막합니다...
교과서 보시라는 분 오르비에서 처음 봄 굳입니다 ㅎㅎ
교육과정에 충실해야 한다는걸 사람들은 모르죠..
어어 개(수)세기는 안된다
아 ... 그것도 쓸려고 했는데 ... 수학1에서 수학적 귀납법 증명(+순열조합), 지수로그함수에서 선분 위의 점의 개수, ... 이런거 단답형에서 쌍으로 출제되면 ... 사실 난문 없이 상위권도 변별 가능해지죠 ... 수학2, 미적분에서도 뭔가 개수 세기 결합해서 출제할 수도 있고 ... 뭐 ... 조합의 수는 무궁무진하니 ...
항상 좋은 글 감사합니다~