[실모 뿌림] SEL:ON 6평 대비 모의고사 by 설수교
게시글 주소: https://9.orbi.kr/00068204853
SELON_6월_해설.pdf
SELON_6월_문제.pdf
안녕하세요! 서울대 수학교육과 TEAM SEOL:NAME입니다!
원래 10시에 올리기로 했는데, 늦게 와서 미안합니다ㅠ
※ 시험 구성 상당히 빡빡합니다. 일부러 그렇게 만들었어요.
대신 배워갈 요소는 상당히 많습니다.
1. 모의고사 이름 : SEL:ON 6평 대비 모의고사
2. 문항 개수 : 공통과목 22문항
3. 문항 컨셉 : FULL 자작 문항 + 22번은 상당히 어려워여
4. 제한시간 : 60분 + α
- 정오사항(5/28)
문제 14번 : (나) 조건
“두 실근“ -> “음이 아닌 두 실근“ (답에는 변화 X)
많은 분들이 볼 수 있게 좋아요 부탁드려요!!
후기 남겨주신 분 계시면 나중에 깊티라도 하나 들고 찾아갈수도..?
오류나 문의사항은 댓글 또는 쪽지로 부탁드립니다:)
SEOL:NAME, The Signature
0 XDK (+3,100)
-
3,000
-
100
-
재미읎다 1
에휴이
-
250은 그냥 깨지네 옷사고 뭐하고 하면 300은 깨지는거네 흐음 ㅜ
-
그래서 전 직접 만지고 있어요. 냄새도 좋아요.
-
수갤 시절 문학인데 진짜 잘 만든듯 그보다 중3때 광운대 봤는데 이쁘더라
-
하
-
06이며 이번 수능은 미적선택하여 68점 나왔고 우선 미적은 시발점부터 다시 할...
-
달러에서원화로환산할때 뒤에14만곱해주면돼서 계산편함
-
과목 장점으로 말장난 없다는 걸 내세우는 건 궤변임 7
평가원이 마음만 먹으면 바로 양질 구분, 다중부정, 필연개연으로 선지 다 흔들어놓을...
-
설머 -> 기회와 운, 실력 삼박자가 다 맞아야 갈 수 있는 천재일우의 대학. 신 그 자체.
-
항상 재수 때부터 서성한 이상이 목표였기 때문에 올해는 꼭 가고 싶은데 하… 올해...
-
사교육 카르텔 처치 한번만 해주세요 국어만 1 뜨면 진짜 치대 될거같은데.. 이것만...
-
쌩삼하게되면 5
공스타해야겠다 천명팔로워가목표야아
-
쌩4수를 해야 폭발적으로 올릴 수 있을 것 같고 근데 만약 4수 5수 모두 수능에서...
-
시골의 기준이 뭘까
-
독서 인강 추천 2
문학은 강민철 할건데 독서도 강민철쌤 할까요? 대성, 메가패스 있습니당
-
추합은 될 수 있으려나요 허허이,,
-
“지속 가능한”
-
투과목은 왜 3
2컷 3컷이 10점차가 나는거냐
-
수능 끝나고 보니 그냥 씹황엘리트goat 그 자체네요 저길 수능으로 간다고?
-
백분위 어느정도 받아야됨?
-
안녕하세요 시대인재 국어 KEY T 현강 신청하려는 고3입니다 전화해서 안내받고...
-
호머식해도못가던데 ㅋㅋㅋㅋ 확통으로올거면걍만점을받으라는거지..
-
이러면 뭐가 나음요 집에서는 부산이 좀 더 가깝긴한데
-
대충 맨시티 망했나보네
-
어느대학 정도면 상경할 거 같나요 저는 건국대 ㄷ 부산대는 좀 고민되는 거 같은데ㅠㅠ
-
올해수능 봤어도 잘 걸거라는 장담을 못하겠음
-
고대기원3일차 0
-
요즘 일상 10
9시 반 기상 탁탁탁 아침식사는 시리얼 피아노 와장창 점심식사 약간의 공부 탁탁탁...
-
정신적으로 무너지는 기분이 든다 뭔가 ㅈㄴ 늘어놓고 싶어도 걍 현타와서 다 지워버림..
-
30초남자 생일선물 보통뭐받고싶어함? 물어보니까 자긴 필요한게없다는데 ㅜㅜ 개바쁜사람임
-
물리 2컷 1
ㅈㅂ...... 시대컷보니까 컷 44던데 아니죠?ㅠㅠㅠㅠ제발 43이면...
-
안정으로 하나 쓸 때 외대나 경북이나 떨어지면 미친 수준이라 둘 중에 하나...
-
轗 0
길이 험하여 수레가 가기 힘들 감
-
玂 0
개 새끼 한 마리 낳을 기
-
“고시 게시판”을 신설해야 한다. 로씨행 로씨행 신나는노래
-
실수할 각이 너무 잘보여서
-
잘 하려고 열심히 하는 것인데,,, 열심히 하는데 잘 못한다면,,
-
확통 백분위 대충 86까지 내려간다치면 국숭 가능할까요?
-
프로필이랑 상세설명 올려놨는데 잘구해짐?
-
알려드릴까요? 와 ㅈㄴ 잘생겼음
-
자야하는데 아 0
포기.
-
”경희한논술 불합격“
-
님들 경제하셈 10
경제가타임어택이다 <---이거혼자꿀빨려는경제러들가스라이팅임뇨...
-
히히히히히 3
ear sex let's go
-
난이도는 미적이 훨씬 어렵긴한데 미적찍맞도 엄청 많고 22번틀린 1-2등급 많아서...
-
문제들이 전반적으로 우진틱했음
-
설대>>>생윤등의 과목등이 표점 폭발 연대>>수학 반영비 축소, 사탐3퍼가산...
-
눈 감았다 뜨면 열흘 지나있스면 안되냐
-
48/50 50/50 에서 3/3뜨는거는 대체뭔개같은경우임뇨
-
나 모르는문제 17로 찍는다고 아오
와...
하 오늘 밤 다 잤네
일단 풀어보겠습니다만...저같은 게 할 수 있을 진 모르겠습니다
3~4왔다갔다하는 허수라서 울뻔했어요..ㅜㅜ 여기서 많이 배워봐야 겠어요
와우 수행평가 끝나면 풀어봐야겠어요 감사합니다
설수행 모음집 같은거 만들실 계획 없으신가요 ??!!
설수교식 수학 행동 강령이요! 책 한권 버전으로 있으면 좋을거 같아서요!!
지금은 PIOTICS라는 브랜드에서 XENON이라는 교재로 판매 중에 있어요! 물론 얘는 약간 개념+기출분석서에 가까워요! 이번 년도에는 조금 더 실전적인 책으로 인력 투입해서 제대로 제작할 계획입니다:)
오호 빨리 풀어봐야겠네요 !
내일 바로 학교에서 지인선 N제 풀고 이것도 풀어볼게요!!ㅎㅎ
넵!!! 근데 보통 모의고사 풀 때 공통영역이 60분 정도 걸려야 하는건가요?? 난이도 5모정도처럼 여기저기서 시간지연되었을때 어느정도 선에서 공통영역이 끝나야할지 궁금합니다.
이건 사람마다 편차가 좀 있긴 해요! 저 같은 경우에는 일단 우다다 풀면서
[ 공통 45분 ] - [ 선택 30분 ] - [ 못 푼 문제 25분 ]
이렇게 시험 운용했었는데, 아예 확실하게 만점 노리시는 분들은 보통 검토 시간 빼고 공통 기준 50분 안쪽으로 끝내는 편이죠! 개인 풀이 스타일에 맞게 공통:선택:검토 비율을 5:3:2 정도 비율로 맞추면 좋은 것 같아용
오 감사합니다
다 빡세보여서 좀 쉬워보이는 10번 풀었는데, 정말 잘 만드셨네요. 수고하셨습니다!
(스포주의)
일단 극한조건에서 직사각형이면 되겠거니했고 (1)
근데 min value는 왜준거지? 하다가 왼쪽에서 f 따라가면 되겠네 (2)
두 가지가 간결하면서 최소한의 조건으로 추론의 강도를 살짝 높인 것이 정말 예술이네요
개인적으로 문항은 어떤 방식으로 만드는지 좀 여쭐 수 있을까요?
1. 기출이나 사설 보면서 좋았던 아이디어를 조금 더 깔끔하게 승화시킨다
2. 발문은 언제나 깔끔한 방향으로
욕심 버리고 제작하겠다는 마인드로 항상 만드니까 괜찮게 뽑히더라구요..!
이와 별개로 문제 양식이나 발문 등은 근무하고 있는 곳에서 배운 것 바탕으로 제작하고 있습니다!
저는 팀원 중에서 가장 최하위 수학실력을 가지고있지만
일단
(1) 기하학적 관점으로 비교적 쉽게 접근할 수 있고
(2) 각각의 숫자로 위치를 한 번 더 고려해서 딱딱 퍼즐이 맞춰지는 느낌이 너무 좋네요ㅎㅎ
맨날 기출만 봐서 눈에 진물이 났는데 잠깐 설레임 팀의 문제를 풀며 힐링타임 가졌습니다ㅎㅎ
앞으로도 건승하셨으면 좋겠습니다!
선생님
이거 혹시 손해설 올려도 괜찮을까요..?
13번은 진짜 출제포인트가 눈물나네요
최고의 퀄리티네요 발문이 우선 너무 제 취향인 거 같아요
다들 6모 전에 꼭꼭 풀어보고 가시면 좋을 거 같구, 6모 이후에도 전혀 식거나 상하지(?) 않으니 푸시면 도움 되실 문항들인 듯해요!
낮은 1등급이라 그런가 진짜 매워보이네요..
일단 시간은 잡고 최대한 풀다가
시간 제한없이 깊게 생각하면서 무조건 다 풀어볼게요 흑 수학 잘 하규싳다
도움되시길 바라겠습니다!! 화이팅!
등급컷은 생각해두신게 있으신가요?!
공통만 있어서 따로 고려를 안 하긴 했는데, 아마 4점 오답 개수 기준으로
1컷 : -4개
2컷 : -6개
정도 생각하고 있습니다!
5월에 배포한 거 아직 안 풀었는데, 난이도는 뭐가 더 높을까요?
감사합니다.
감사합니다
4-5등급이면 5월에 배포하신 자료가 더 낫겠죠?
그렇게 하도록 하겠습니다. 얼른 설네임팀 컨텐츠를 맛볼 수 있는 실력이 됐으면 좋겠네요 ㅠㅠ
3-4개 정도 틀리면 대략적으로 등급이 어떻게 될까요?
문제 좋네요 아직 많이 부족하지만 수능 땐 꼭 만점을 받아보죠
헉
가벼운 마음으로 풀어봤다가 눈물 찔끔 흘렸네요.. 말씀하신대로 배워갈 게 많은 시험지인 것 같습니다.
절댓값범벅
절댓값으로 문제를 어렵게 낼 수 있어서 그랬는지는 모르겠지만
평가원이 이렇게 절댓값을 많이낸적이 있나요?
공통에서 3개가 보이네요
암튼 잘풀었습니다 어렵네요
다시보니까 4개네요 ㅋㅋㅋㅋㅋ
넘 어렵다… 13,14,21,22 틀럈네요 ㅋㅋㅋㅋ
혹시라도 수정 전 버전으로 푸셨으면, 14번 문제 정답 -26 나올 수도 있으니 참조하세요!!
21진짜 너무 맛있네요..... 아직 22때문에 답지 확인은 안 해서 정답이 맞는지는 모르지만, 답이 그냥 띡하고 나와서 기분이 좋네요. 반면에 22번은 진짜 헬헬헬이네요.......
70분 14 15 22 틀렸습니다
15는 쉬웠는데 14 22 벽느껴지네요...
10번에서 (나)조건 우극한으로 제시한 이유가 무엇인가요?
함수가 실수 전체의 집합에서 미분가능한 함수가 아니기 때문입니다. x=2에서 함수가 미분가능하지 않아 이렇게 표현하였습니다. (미분가능하려면 f'(2+)가 0이어야 하는데 (가) 조건으로 인해 우미분계수가 양수입니다.)
답변 감사합니다.
그러면 적분구간을 1로 주지 않고 (나)조건의 표현을 선택한 이유가 있을까요?
요즘 한쪽극한 문제를 의도 했다는 표현이라
문제풀이에 혼란을 줄 수 있는 표현같아서요
굳이 적분구간을 2로 선택한 것은 원하는 바를 정확히 알아냈는가를 평가하기 위함입니다. 사전 평가 때 적분구간 1~2에서 g(x)=f(x)+4로 실수해서 푸는 사례가 존재하기도 하였고, 1까지 적분하면 문제가 너무 단순해질 듯 하여 추가한 조건입니다. 사실 x1<x2일 때 f(x1)<=f(x2) 이 조건으로 줘도 되긴 하는데 연속함수 조건 등의 추가 조건이 더 필요해져 난잡해 보일까 우려되어, 해당 표현을 선택했습니다
혹시 14번 질문해도될까요?
과거 ㄱㄴㄷ 문제중 ㄷ에 f(a+h)-f(a-h)/2h 나오는 문제와 다르게 14번은 a가 아니라 변수t라서 미분계수의 정의를 이용할 수 있다는 논리 인가요?
주어진 극한식 t에 t+h를 대입후
g(x)=|f(x)| 라 두면 우변이 항상 실수로 존재>미분계수 정의에 의해 g'(t)=lim 2t+2h-4= 2t-4로 생각했는데 논리적 오류가 있나요?