[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://9.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기존어 쓰던거 약 30여개 + 쪽지 댓글 하면 한 300명도 했을지도 팔로워가 매년...
-
?
-
외국어 대학이라며
-
?????? 자X을 하는데 유튜브 미쳤나
-
가즈아
-
쪽지로 상담 한 번만 해주시면 안 되나요... 삼수인데 현역 재수 두 번 다...
-
애초에 그냥 문과학굔줄
-
영어때문에 안될거같긴한데 걍 써보게요
-
인생 망했네 진짜
-
3:4를 읽는 네가지 방법 아는게 당연한건가
-
역대급 각이다
-
역전하거나 합격한 사례가 있음? 서울대 내신 평가제도가 어느정도인데
-
흐흐흐흐흐흐흐흐흐흐
-
범준T 인강진도 6
올라오는 속도가 좀 느린거 같은데 저만 그런가요
-
여자친구를 기다리는거야 14
뻥이라는거야
-
가,나,다
-
흠흠흠
-
4.9칸하나 5칸 하나 적을것같은데 하나는 6이상 넣어야겠죠?
-
성사과 최초합 217명 뽑는데 왜 183까지만 추합주나요? 표본이 더 들어올거라고...
-
펑크 날 확률이 높다는거 맞나요??
-
여러분들은 정시원서접수 부모님께 몇칸 뜨는 학교 이런거 다 말하시나요? 16
막 원서 쓸때 여기는 상향 안정 이런거 말하시고 안정 두개, 상향 한개 쓴다 다 말하시나요?
-
같은 4칸이면 0
3명 뽑는과 vs 10명 닥후인가요 둘다 4칸에서 중간 등수
-
냐옹 4
애옹
-
힌트는 "오늘"
-
크하하 0
게장은 너무 맛있는 거 같다
-
히히헤헤꼴꼴ㅋㅋ루삥빵뽕
-
사탐런 꿀팁) 0
제발 사탐하고 공대갈거면 물화12정돈 대충 하고 가라 끝
-
연대 0
연대 사학과 쓴 사람입니다. 696점 중반대인데 모의지원상으론 최초합이었습니다....
-
특히 시대컨설에서 연경 엄청 많이 부른거같은데
-
집 앞 일반고 다녓다고 가정했을 때 수시로 어디라인까지 갔을까요 그냥궁금…ㅎㅎ...
-
출제의도대로 풀어서 정답을 맞추신 두 분께 각각 1000덕씩 드렸습니다 풀어주셔서...
-
방어먹고싶다 3
그지라서 울었어
-
재수불가라 재수방지/추합/상향 드가자
-
원래 8명 뽑고 5명 수시이월 됐는데 8등까지 최초합 주는데 그냥 자체에서 짜게 주는건가요
-
노래 좋은데? 0
존나 이상한 양반인 줄 알았는데 뭐냐
-
오랜만에 막내된거같아서 기분 좋앗러
-
그니까 빠른입니다 이번에 학교 바꿀거같은데 그냥 동기들한테 머 어디서 반수해서 왔다...
-
고대 교과우수 빵난곳이 사회 행정이에요? 독어독문은 차피 추합안도는건가용?
-
하..
-
경쟁률 제일 낮던데
-
전남대 전과 1
전남대 어문계열로 들어가서 상경계열로 전과하는 거 많이 힘들까요??
-
지리 씹노베인데 이기상 책보니까 진짜 저한텐 암기량이 역사급인거같아서 ㅌㅌ함
-
안정으로 쓸 수 있음?
-
최종업뎃후 실지원자 등수 밀리는거랑 진학사 안쓰는 사람들 감안해서 진학사가 칸수...
-
정시모집 전형일정 보니까 원서접수 사이트에 pdf업로드 라고 써있는데 제가 따로...
-
똥이 안 보여 6
어디 간거야
-
최초합 32명 중 22등인데 발뻗잠 ㄱㄴ할까요ㅠㅠ
-
개념, 기출, 모의고사, 마지막만 들으면 될까요? 아니면 위치랑 빈칸도 다...
-
충북약 0
충북제약 느낌이 펑크날것 같음 반대로 충북약은 빵 조짐이.. 경쟁률도 충북약보다...
-
공유좀요
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ