샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고)
게시글 주소: https://9.orbi.kr/00070160414
h(x)를 정리해 봅시다.
그래프 그려보시면 대충 사다리꼴 하나가 나옵니다.
a도 모르고 b도 모르고 k도 몰라서
어디서부터 뭘 할 수 있을까 처음에 막막합니다.
그런데 이 조건에 초점을 두어 봅니다.
우선 x가 0 이하일 때에는 당연합니다.
0은 0 이하이고 동시에 0은 0 이상이기 때문입니다.
그리고 구간 [0, 2]에서는 생각하기가 복잡합니다.
앞서 x가 0 이하일 때를 살펴본 것을
x가 충분히 작을 때를 살펴본 것이라 생각합시다.
그러면 우리는 대칭적으로 x가 충분히 클 때를 살펴보고 싶습니다.
그런데 x>2일 때 g(x)=0입니다.
그래서 x>2일 때 h(x)도 0을 함숫값으로 가집니다.
이때 h(x)=k(a+b-2)였기 때문에 a+b=2임을 확인할 수 있습니다.
그러면 다음과 같이 h(x)식을 다시 작성해줄 수 있는데
생각하기가 훨씬 편해집니다.
이제 함수 g(x)도 h(x)도 x=1에 대해 대칭이기 때문에
함수 g(x)-h(x)를 구간 [0, 1]에서만 살펴봐주어도 되겠습니다.
이제 구간 [0, 1]에서의 적분값이 최소가 되도록 해 봅시다!
만약 a가 모든 실수를 범위로 한다면
적분값이 a에 대한 이차함수이기 때문에 a=1 넣고 끝내면 되겠지만
a<b 조건에서 0<a<1임을 확인하실 수 있습니다.
따라서 그런 식으로 문제가 풀리지 않을 것이라는 것을 확인하시면 좋습니다.
아직 이 조건을 제대로 활용해주지 않았는데,
마찬가지로 구간 [0, 1]에서만 신경써주면 되겠습니다.
이때 구간 [0, a)나 [a, 1]이나 모두 최고차항의 계수가 음수인
이차함수의 그래프를 보고 있으므로 대칭축이 어디에 있든
x=0, x=a, 그리고 x=1에서의 함숫값이 음수가 아니기만 하면
위의 부등식이 성립할 것임을 확인할 수 있습니다.
이는 x=0과 x=a, 그리고 x=1을 기준으로 대칭축의 위치를 나누어 보시고
하나씩 판단해 보시면 금방 확인하실 수 있습니다.
0<a<1이므로 남는 조건은 다음의 부등식입니다.
이를 통해 주어진 적분값을 나타낼 수 있습니다.
그렇다면 주어진 적분값의 최솟값은 위 부등식 우변의
a에 대한 삼차함수일 것임을 확인할 수 있습니다.
우변의 삼차함수는 0<a<1일 때 a=2/3에서 극솟값을 가지므로
a, b, k의 값을 모두 결정할 수 있습니다.
다른 문제를 살펴봅시다!
앞서 a+b=2 조건을 발견한 것과 비슷하게 생각해 봅시다.
0<h<g 꼴에서 g=0이면 h=0임을 확인할 수 있었듯이
만약 2k-8=4k^2+14k라면 주어진
점 (k, f(k))와 점 (k+2, f(k+2)) 사이의 평균변화율도
2k-8일 것입니다.
위의 등식을 만족하는 k의 값은 -2와 -1입니다.
이후 계산하여 f(x)의 이차항, 일차항 계수를 확인해주었으면 됩니다.
p.s. 고정 관념을 버리는 것은 수능 수학 공부에 도움이 됩니다.
시도해 볼 수 있는 풀이가 n가지 있을 때 하나만 올바르다면
그 하나를 찾아내는 것이 실력이라고 생각합니다.
구간 [0, x]에서 어떤 함수를 적분한 x에 대한 함수가 주어졌다고
무조건 미분해 보는 것이 답이 아니고,
평균변화율 꼴로 식이 주어졌다고
무조건 기하적으로 해석해 보는 것이 답이 아닙니다.
위 문항 2025학년도 9월 21번도 점 (k, f(k))과 점 (k+2, f(k+2)) 사이의
평균변화율로 직관적으로 이해해보려 하는 동시에
k가 정수임을 신경쓰며 주어진 부등식을 다루어보려 했다면
현장에서 빠르게 정답을 내기 쉽지 않았을 것입니다.
2022학년도 9월 14번 변형 문항인데,
x<0에서의 g(x)를 점 (0, f(0))과 점 (x, f(x)) 사이의 평균변화율로
바라볼 필요 없이 그냥 식 정리해서 이차함수로 다루시면 됩니다.
비슷한 느낌의 기출 하나가 있었는데 못 찾겠어서 나중에 찾으면 댓글로 언급해두겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
캬캬
-
ㅅㅂ 존나 긁히네
-
귀여운거로 프사하니까 오히려 역효과가 나는듯 적당한 거 찾으면 바꿔야지
-
얼마나 올지 가늠이 안가네..
-
중대붙으면 0
물투해야지 으하하
-
ㄹㅇ 갑자기 이렇게 질문받으니까 생각이 안남
-
솔직히 올해 디카프였나 생명쪽 실모 평은 굉장히 구리긴했음ㅋㅋ
-
하 모르겠다 0
컷이고 만표고 스트레스만 받네 과목선택을 뭣같이 해서..논술 붙었으면 좋겠다
-
걍 처잘까 1
흠
-
옯스타 맞팔해요 18
방굼 만들엇어요 본계든 부계든 다 오케이에요 칭구해요~
-
고2때부터 정시준비해서 강기분 새기분끝냈고 지금 검더텅하고 있는데 겨울방학 때 뭐해야될까요?
-
1. 절대 국장은 하지 않는다 2. 미국 S&P500에 전액 투자하고 인내심을...
-
실모20회분 35000원 무료로 올려주는 실모도 한 20개였나 정확하진않은데 10개이상됨
-
생윤은 무조건 챙길수밖에 없을거같고.. 사문은 도저히 못하겠어서 만약 삼반수...
-
오징어들은 어떻게 살라고 커뮤에서조차 열등감을 느껴야 하다니 ㅆㅂ 예쁘고 잘생긴...
-
폰겜 추천좀 5
힐링되는걸로...... 마크빼구요ㅋ
-
ㅋㅋㅅㅂ
-
2026 수능 0
뿌시고 올 team 04는 ㄱㅊ!
-
ㅈㄱㄴ
-
실채 나오고 텔그나 진학사 변경되는데 몇 일 걸리나요?
-
아니시발 3
그아아ㅏ악
-
볼륨도 개크고 어느정도 개념 있는 상태에서 들어야하나? 난 2배속으로 들었는데 정말...
-
ㅇㅈ 22
꼴에 장발하는 개찐따옯붕이다 됐음??
-
팥붕보다 슈붕임 4
진짜 오늘 두개 먹으면서 한번 더 느꼈다
-
올해 국잘수잘탐망이 많아서 표본에 비해 갈수있는 대학이 널널해져가지고 내가 가능한...
-
ㅇㅈ 1
-
19번까지 풀어서 16개 맞았고 그러니까 13,14,15 틀렸어요 13번 어느...
-
미소녀로 다시 태어나 있을 테니까!!!
-
https://www.mycsat.re.kr/report/index.do...
-
크리스마스 7
다가와도 아무느낌도 없구나 외로움을 못느낄정도로 감정이 무뎌졌나
-
못참고 샀는데 제가 대충 경외시건 라인인데 궁금해서 스나용으로 성한중 라인대 확률...
-
돌아보면 제 개념에 빵꾸가 왕창 나 있었던... 변명 못 하겠네요 이렇게 된 이상...
-
2-3등급 학생들에게 독인 시험이 아녔나요? 준킬러 없이 극단적으로 나뉘니까..
-
중앙대 경영 1% 외대 경영 8% 외대 Language&AI 41% 홍대 A학과...
-
작년기준 컷 1
작수보다 이번 수능이 만표가 낮은것 같은데 그러면 컷 자체도 떨어진다고 봐야하나요?
-
지원 조건에서 없어진건 알고있고 표점 생각했을 때 투과목이 필수인 건가요??
-
유저 차단 어케함요? 12
ㅈㄱㄴ 아무리찾아봐도없던뎅
-
미적 14 15 20 21 27 28 다 맞추고 22 29 30 틀리면 '1컷'...
-
술 마시는 것도 아니고 게임 하는 것도 아니고 걍 붕어빵 열 마리 사다가 나눠먹고...
-
거기까지 가서 한국어는 별로 듣고싶지 않은데..
-
안 그래도 애매함데 남중남고군대남초과라서 ㅈㄴ까이는 듯 근데 또 애인은 내 얼굴 좋아하고
-
컄얀
-
도움! 1
대학교메일 받으려면 따로 신청해야되는건가요? 메일있어야 엑셀 된다길래
-
공부일기 1장 5
D-349 오늘 공부한 과목:수학,영어 -수학 시발점 수학2...
-
진짜 다군 고려대조차 떨어질수도 ㅋㅋ
-
오히려 그런짓 하는거 보고 지겨워서라도 그만 하라고 비판하지 근데 페미에 대해 잘...
-
경외시 낮과(문과) vs 과기대 itm이면 어디가는게 맞을까요 4
학교 네임벨류나 주변 인식 등을 생각하면 전자인데 또 과를 보면 후자라서.....
-
네.