정말 멋잇는 문제 2
게시글 주소: https://9.orbi.kr/00071149712
6x6판이 2x1의 조각으로 덥혀있다. 이때 항상 이 판을 두 직사각형으로 나눌 수 있음을 증명하여라. (어떤 조각도 두 개의 직사각형에 걸쳐있지 않다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
있었다면 참가하고싶었는데
-
?
-
작년 영어 수특 0
작년 영어 수특으로 방학때 공부 해도 되나요? 개학하면 이번 수특으로 영어 공부 할것 같아요
-
어떤거를 1순위로 하실건가요? 배우고 싶은거 배우기 또는 자격증 취득 같은거 부터...
-
투데이 4
171130
-
질문 좀 받아주실 분...
-
누가 더 잘벌까
-
현실고증 등등 유튜브에 보면 머리는 떡져있고 야갤 일베 이런거하고 여성에 대한...
-
수학 시간관리 0
저는 모의고사 보면 끝까지 다 풀었을 때 10분도 안남거나 한개 못푸는데 의대생들은...
-
몇일째 변화 크게없는데 작년 제작년이랑 2배이상 차이나네 대형과인데
-
학벌 중요함?
-
이게 뭔뜻임.? 9
스커? 가 뭐야
-
의사 망한다 8
는 얘기 너무 많이 들어서 감이 없다 고도의 의까인지 진심으로 미래가 그정도로...
-
경기 남부만 해도 오늘 레전드던데 진짜 죽을 맛이겠다
-
궁금한게 올 1컷이면 12
어디감뇨? 96 96 1 96 96이면
-
초중학교 공부만 했고 사회성이 없었고 친구 1명 있었으나 친구가 타지로 전학을...
-
답All담 답Full담 독서 문학 OT, 맛보기 강의 다 들어봤는데 괜찮은거 같아서...
-
오늘 저녁은 카레 25
오르비언들 맛저하세요
-
수학 노베 재수 예정인데 수학 낮3~높3에 올1뜨면 보통 최대로...
-
[속보]尹지지율 36.9% 전달보다 22.1%p급등…與지지층서 80.5% 14
“윤 대통령 반대한다” 59.1% “위기 느낀 보수층 결집” 윤석열 대통령 지지율이...
-
넵
-
풀업 개힘드네 2
헬린이에게는너무어려운운동이에요
-
일반사회뿐임? 지리나 역사는
-
이거 과외생 부모님한테 늦을거 같으면 바로 전화드리는게 맞겠지? 하
-
3일동안 안씻은 결과인가
-
미적분
-
외모가꾸기 5
이게 ㄹㅇ 젤 중요한거같음 오히려 대학보다도
-
나의 Mbti는 2
맞춰봐요
-
다군 대형과 빼면 들어오는 인원이 없습니다... 가나군 둘다 50퍼센트 조금 안되게...
-
퇴갤 3
-
점공좀 봐주실분 1
11명 뽑는 과 38명 지원 점공 현재 17명중 몇등이면 가능성 있을까요 몇일전...
-
내일 중요한 브리핑인데 일났누... 우야노...
-
내가 느낀 점임 1. 과탐 1이면 스테이 2. 사탐런칠거면 백분위 최소 98 이상...
-
여친 ㅇㅈ 5
어디 계신데요.
-
상지한 a형 5
976 수학 백분위 98 합격 기원…. ㅈㅂㅈㅂㅈㅂ
-
진학사에서 앞에 있었던 표본들이 이제 슬슬 들어온거 같은데 4명이나 더 들어오지는...
-
40%?
-
손주은 선생님 피셜 스카이 서성한 중경외시 동건홍숙 일류대학 동의하나요?
-
여긴엔더시티~ 6
겉날개 구하러 왔어요
-
나ㅏ는 아직 2
아직은 오르비 뉴비려나아
-
그거때매 지니까 아직도 못잊겠어
-
입시 < ㅋㅋㅋ ㅂㅅ인 걸 아는데도 아직도 탈출 못 하고 있으면 ㄱㅊ
-
최대한 빨리 탈출해야겠다
-
잘 보일지 모르겟지만 대충 저렇다네
-
코 막고 화장실 가고 오엠알 시험지 다 갈아야해서 통째로 세지문인가 날림 9평 때...
-
아이패드 사는데 8
256 사면 용량은 절대 안딸리죠? 6년써야함 근데 아직도 색 고민중임...2월초에 살건데
-
반응이 좀 차가움요? 인터뷰 보니 다들 연고 목표네 서울대는 거의 없고 왜지?
-
2026 본바탕 0
1권 푸는 중인데, 한 35분-40분 초반 정도 걸리고 1개정도 틀리는데 괜찮은...
-
22111 41121 21221 41121
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음