심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여캐일러 투척 7
돔황챠
-
안녕 오르비언들 15
담에보자!
-
ㅇㅈ메타 안오네 0
도파민이 필요해
-
집에 가야지 1
으흐흐
-
그 이상은 득보다 실이 큼 근데 알면서도 쉽게 사라지거나 무시하긴 힘들어서 스스로를 설득해야함
-
000~ 뭐 이런식으로 근데 그래야 출석 체크가 되지 않나요 아닌가 모양새가 좀 이상하네요
-
전화 추합 막날 합격이라 아무것도 모르겠고 동아리, 수강 ㄹㅇ 다 모르겠어서...
-
대해린죽음 3
죽음
-
23년 영어 23번 사설이랑 똑같았던거 이거 24 수특에 쓰일 문항을 미리 빼와서...
-
상상도 못하긴 함요
-
정상입니다 기출에 나왔던 소재 재탕이거든요
-
돈 빌려 달라고ㅋㅋㅋㅋㅋ
-
쪽지함에 3
XX명
-
너무 당황스럽게 끝나서 해명하는중이심..
-
옮평인듯ㅋㅋ
-
미적 백분위 68이 정시로 경희대 공대붙었다하면 믿김? 7
올해ㅇㅇ 5에가까운 4
-
진짜 여자분이 나오셔서 당황했음..
-
고2모고 3등급후-4초 떠요 이영수랑 이명학 중에 누구 듣는 게 더 좋을까요
-
쪽지 보냇습니다 2
확인 요망
-
누가 뭐라해도 잘 안들리더라 이게 정신건강이 안좋으면 가장 골때리는 점인데 이미 내...
-
의치한 목표면 사1과1이랑 과2중에 뭐가 낫나요? 12
의치한만 목표고 한의대 선호도가 큼, 수학에는 공부시간 많이 안쏟아도됨(높1권)...
-
근데 진성 옵창이 큐브 하다가 특정되는 경우도있음? 6
전적대 현적대 전부 까이고 거의 하루종일 오르비만 하던 사람이면
-
55분까지 아 +박제
-
쪽
-
옳은 게 뭔지 고민하다 보니 전부 오답이라는 결론이 나왔습니다
-
지2 조언구해요ㅜㅜ 15
삼수생 입니다 ㅜㅜ 내년에는 인서울 의대로 목표로 (정시) 하고 있고요 ㅜㅜ(ex:...
-
드립인거죠? 진짜 보내시는 분은 없겠죠? 설마…
-
진짜왔네
-
이게 아이돌 서바이벌이 아니라 재수 서바이벌 프로그램이라고??
-
본인은 대놓고 여자인데 어째 한 통도 안 왔지 텍스트에서 찐따 티나서 그런가 흑흑
-
커리좀정해줘요 9
히히
-
진짜 저 미모에 연의는 아니잖아.. 적당히 가져가야지...
-
깜짝퀴즈 9
‘가리키다’ 영단어로?
-
징징글보다 게이글이 낫다
-
세미 홍대병자라 대성 듣는데 PC에서는 자동 로그인 기능 지원도 안하고, 인강...
-
언제 국어 강사들과 함께 모고푸는 날이 있었는데 그때 펜을 안들고 와서 40분 동안...
-
지금 평가원 기준 88~92정도 나오는데 평가원 기출을 1년 전쯤에 보고(수1,2)...
-
제 주변에 논술합격한 친구들이 많은데 한명은 학원 3일 다니고 중앙대 합격한 애도...
-
고능아모임;;
-
왈끼얏호우 19
컹컹 옯컹컹 삣삐삣삐 왈끼끽
-
무슨 소리인가 하면 다 글은 모니터링함 그래서 심한글들은 다 내려감 근데도 시대갤을...
-
얼버잠 합니다
-
ㅇㅈ 5
-
수학 열심히하던데 좋은데 붙었을려나
-
어릴 때 연어먹으면 복어 홍어 해파리 냉채마냥 톡쏘는맛이 있는줄 알았는데 알러지였던...
-
사실 법사가 생김
-
개념은 오지훈t 꺼 듣는 중인데 다 듣고 나서 들을 만한 커리 추천해주세요
-
안녕하세요 올해 학교 입학하는데 제목 그대로 반수 고민을 하고 있습니다 옛날에는...
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요