미적분 문제 (2000덕)
게시글 주소: https://9.orbi.kr/00071716950
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 계산량에 깔려죽게 생겼다
-
완전대칭인 최고차항 계수 1인 사차함수 극값 두개 알고, 3
극대를 갖는 x값 하나 알 때 1:루트2 비율관계 쓰는거 말고 좀 더 깔쌈하게 식...
-
은행상품에 가입해야겠다
-
현실에선 인가경도 상위권이다라고 말씀하시는 분들이 계십니다단순 수치상으로는 정시...
-
정약용 ㅅㅂ 1
진짜 너무 오지랖퍼아님?
-
전화추합이 4
2월 극말이나 3월에 오는 경우도 있나요??
-
주식같은걸 하면 쓰나 만18 세는 계좌도 못만드네
-
작수 2등급따리가 버텨낼수 있을지 살짝 쫄리는 부분 지금 6주차까지는 버겁진않음
-
PCR 2회차긴한데 개맛잇게풀었음 그냥거의고추슥슥비비면서풂
-
수학은 실전개념 강의가 되게 많은데(뉴런 알텍 프메 스블 등) 과탐 실전개념은 왜...
-
예 예 예
-
주식해보려했는데 9
이런 ㅆ 만18세라서 안되네
-
거의 못 붙나요?? 아는사람없음?
-
누구 하는 사람 있긴 함?? 지방 일반고다니는 내 사촌동생 하긴 한다더라 ㅋㅋ
-
맞팔구합니다 10
잡담태그 잘달고 뻘글 많이씁니다
-
한건희랑 하재호가 goat
-
어떻게 친구들보다 막차가 1시간이나 빠르냐? 시발
-
너구나?
-
그런건없다
-
오늘 정말재밌었습니다
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대25][필수 활동 4가지] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
거의 1년 뒷북이긴 한데 재밋다
-
눈에 ㅈㄴ 튄다
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
김승리에서 시작해서 정석민으로 끝남
-
여캐 일러 투척 7
-
정법하고싶어정법하고싶어정법하고싶어
-
캬루룽 그림 그렸다 13
채색은 도저히 못해먹겠다
-
10시임 7시간 채우려면 1시까지해야댐 ㅠ
-
미3누 나올때만 해도 몇십년간 사람 되게 좋지 않았나 뭔 계기로 정치병 걸린거? 진짜모름
-
롤할사람 0
롤체할사람
-
미칠거같애
-
오지훈T 특) 8
맨날 시험 난이도가 약간? 어려웠지만 개념 학습이랑 자료 해석만 잘하면 풀 수준이었다고함
-
운전면허 5
따는 데 얼마나 걸려요?
-
전한길 "재판관 4인 사퇴 안 하면 국민들이 헌재 휩쓸 것" 13
▲ 지난 19일 유튜브 채널 '꽃보다 전한길'에 올라온 부정선거 의혹 주장 영상.ⓒ...
-
보통 공부 관심 없어도 수능 접수할 때는 그냥 조금이라도 아는거 선택하지 않나?
-
클리어!
-
예를들어서 평소 본인 이상형에 부합하지 않은데 (얼굴 많이 보는 눈높음) 어떤...
-
탑 그라가스 가렌 정글 마오카이 미드 갈리오 원딜 미스포춘 시비르 서폿 룰루 유미...
-
맞89 9
은테달고싶네
-
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
내전할 때마다 나랑 맞밸로 정글 가는 친구가 마스터 찍음 이게 말이 되나
-
플래너 봤는데 윈터수업 인강 다 포함해서 256시간이네요 이전까지 한달에 최고로...
-
계명대 근처 놀거리나 인프라 좋나요? 서울에서만 살다가 대구라는 도시 처음 갈 거...
-
우우우우
-1/4?
틀렸나바...ㅠㅠ
혹시 답 뭔가유?
힌트좀요..
주어진 극한을 급수로 최대한 바꿔봅시다!
저 급수 형태가 어디서 많이 본 형태 같지 않나요?!
그러게요 적분하려고했는데 xlnx를 0부터 1까지 적분하지 못하겟어요
xlnx가 x=0에서 정의가 안되서 그런가요?
ㅜㅜ
그럴때는 x=0일때만 따로 정의을 하는 방법이 있습니다 :)
일단 이렇게하면 -1/4 나오네여
완벽합니다!
+f(x)를 x=0일때 0, x>0일때 xlnx로 두면
f(x) 적분하는데 아무 문제 없이 적분할 수 있습니다 :)
문제재밋습니다!
ln(a[n]) = {ln(1) + 2ln(2) + 3ln(3) + ... nln(n)} / 2n²
∫[1, n] xlnx dx = L[n]
L[n] ≤ ln(1) + 2ln(2) + 3ln(3) + ... nln(n) = ln(a[n])) ≤ L[n+1]
(y = xlnx는 x ≥ 1/e일 때 증가)
L[n]/(2n²) - ln(√n) ≤ ln(a[n]) - ln(√n) ≤ L[n+1]/(2n²√n) - ln(√n)
L[n] = [x²lnx - 1/2x²] (1, n) = n²ln(n) - 1/2n² + 1
L[n+1] = (n+1)²ln(n+1) - 1/2(n+1)² + 1
L[n]/(2n²) - ln(√n) = -1/4 + 1/(2n²)
L[n+1]/(2n²) - ln(√n) = (1+1/n)²ln(√(n+1)) - ln(√n) - 1/4 * (1+1/n)² + 1/(2n²)
lim(n→∞) {L[n]/(2n²) - ln(√n)} = lim(n→∞) {L[n+1]/(2n²) - ln(√n)} = -1/4
∴ lim(n→∞) {ln(a[n]) - ln(√n)} = -1/4
샌드위치 정리로 풀어봤습니다
와ㄷㄷㄷ이런 풀이도 있네요ㄷㄷㄷ
레전드고수다