미적분 자작문제
게시글 주소: https://9.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오후 9시에 자서 오전 4시에 일어나기 단점이 뭐 있을까요? 0
지금 해보고 있는데 단점을 생각 안해봤네요, 단점이 뭐가 있을까용 고2입니당 학원은...
-
요즘 오르비 너무 많이 하는 듯요 너무 한심하다 ㅋㅋ 탈릅하면 지금부터 공부...
-
국민대 건축학과 좋다는 말 꽤 있길래 근데 광운이 좋다고 하는 거 같기도 하고,,...
-
도와주세요)원서 접수에 가나다 전형 기간은 뭔가요? 3
원서 접수일이랑 합격자 발표 사이에 가나다 전형 기간은 뭔가요? 그 기간에 해외...
-
사탐이 쉽긴함뇨 1
3모 20 5모 50 수능 48
-
자막 이용, 자막 추출 안됨 자막 있으면 시각화로 학습하는데 도움됨 자막 추출 되면...
-
새 거 상태에서 양도할게요 김진영 서브 필기노트 등등 나름 고퀄템들 많아요 구매...
-
하진짜시발
-
면접 대비용으로 보고 있는데 저때도 의사 파업하고 장난 아니였네 확실히 의료...
-
물리1 지구1 24 36 수능때 42 42 ㅋㅋㅋ
-
지금까지 다른학교 준비하느라 준비 못했는데 지금부터라도.. 어떻게할수잇나요?ㅠㅠ...
-
질문 드립니다 9
네... 많은참여 부탁드립니다
-
나도 이미지 써줌 35
맨날 내가 써달라고만 한거같아서 ㄲ
-
기념으로 여캐일러투척
-
친구들 보니까 뭐 신청해서 선착순 50명 요리해준다던데 ㄹㅇ뭐하는 아저씨임뇨..
-
제아봉침술쓰면 어캐이김뇨
-
저는 국수탐 합쳐서 5개 틀렸고요, 네 영어는 묻지 마시고요
-
힙찔핑
-
점수가 애매해서 둘중에 하나로 방향 정해야할듯요
-
학식머그러감뇨 7
빠빠이
-
답도 다 맞았다는 가정하에.. 합격자 평균점수 보면 80% 정도만 맞춰도 그냥 붙는...
-
캬 이거 재수하면 6개로 줄어드나
-
그니까 너무 쫄 필요없음
-
정상인데 인스타 중독안 남자들은 먼가 뒤가 구렸던 적이 많았던 거 같은데 나만...
-
애니프사단은 실제로 보면 잘생기고 사회성 많고 젠틀하고 시사에 관심 많고 2d...
-
요즘 인스타나 유튜브에 입시 관련해서 ㅈㄴ 킹받는 글이랑 영상 왤케 많냐 3
뭐 대충 뇌피셜 or 아님 말고 식으로 이상한 정보 던지고 수험생들한테 욕 박힐까봐...
-
학종 비율 4
서류 최고 700, 최저 600 면접 최고 300, 최저 270 하 뭐지..
-
씨발 8
군대갔다와서 바이크산다
-
혹시 올해보신분들있나 ㅇㅏ직결과안나와서 모르시려나 과탐진짜 엄청고였던데...화1...
-
경제>>경영 8
경영 허~~~접^^
-
시험장 가는 길에 차에서 어플로 기출 한두바퀴 돌리면 2종 정도는 1트에 합격 가능...
-
근데진짜괜찮긴함
-
실시간 으로 추가하고 싶은데 아직 새로운게 없네요
-
연고대 낮은과 죽어도 안될까요? ㅠ ㅠ 처음이라 잘 모르겟어서,,, 대학 라인...
-
진짜 너무 스트레스받고 힘듦 진짜...어디 놀러간다하면 그친구는 어디대학이냐고...
-
ㄹㅈㄷ 얼버기 2
매일 3-4시에 일어나다가 오늘 1시에 일어남 ㄷㄷ;;
-
그래서다들망함뇨 6평 9평 사탐 백분8n소유자..그게바로 나야
-
안녕하세요, 삼수생입니다. N수해서 성적 변화 없는 케이스들이 많고 수능 중독...
-
이번에는 꼭 붙는다
-
정답자 천덕 물리러드립 아닙니다
-
얼벅이 등장 2
흐흐흐
-
회기탈출하면 3
경뱃달고 경평글 싸야지 흐흐
-
자세한 건 모르고 대충 보니 여당 대가리는 탄핵빔 맞고있고 야당 대가리는 징역빔...
-
이미지 적어드립니다 29
심심해서 달아만 주신다면 정성스럽게 적어보겠습니다...!
-
요즘 반도체학과가 입결 탑급이고 여러 학교에서 많이 생기는 중인데 졸업할쯤 돼서도...
-
존나쳐웃긴데
-
그어살 봐볼까 2
안보긴했는데, 지루하다는 평이 꽤 있어서 고민중
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..