(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://9.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 이야기 아닌줄 알았는데 올해 사설 포함 모든 시험 중 수능을 제일 잘봄 이감...
-
ㅠㅠ
-
팔로우해주세요.. 맞팔해드릴게요..
-
한 번 포텐 터지면 이만큼의 효자 과목이 없는데 그 포텐 터지는 시기가 수학처럼...
-
날이 너무 춥다
-
아로하 들을 때마다 감탄함 게이아님
-
그냥 주인공이 스쿠나 먹어서 개쌔진다음에 저주들 패는 애니같은데 이게 뭔재미지
-
전전 가려면 둘중에 어디로 가야함??
-
ㄹㅇ 4년만에 하니까 운동 다이어트>>>>>>게임임ㅋㅋ 운동과식단으로살을빼보자
-
올해 막판에 상상 국바 월례등등 엄없회차 폼 비정상적으로 좋길래 잔뜩기대하고...
-
난지금약자인데 2
노약자석에앉고싶다
-
날짜만나오고 시간이 안나와요
-
ㅈㄱㄴ
-
마이크로스트레티지 2배 롱 들어갔다가 뭔가 쎄해서 바로 나왔는데 자고...
-
둘 중 어디 입시가 빡셀까요? 진로는 어디가 더 좋을까요?
-
일단 기하를 고르는 가장 큰 이유는 공부 조금하고 날로 먹기 위해서임 (뇌피셜)...
-
20,21살의 풋풋함은 사라지고 예뻐보이고 싶어서 대부분 성형이나 과한 화장으로...
-
지하철타고 편도 15분인데 한번더 하라는 신의 계시인가
-
그남들아 ㅋㅋ 동덕여대는 해방되지않는다 익이 ㅋㅋ 14
어그로 ㅈㅅ 이성적이면 동홍 낮은과 ㄱㄴ?
-
원래 만표는 23페이지 난이도로 결정되는데 중위권 학생들이 23페이지를 얼마나 잘...
-
예비 고3이고 생지런한 사람인데요 내신베이스(마더텅, 수특 한바퀴)이고 유전문제...
-
[이동훈t] 2026 이동훈 기출 교사경 편 예판 시작 ! 5
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
-
ㅆㅂ 톰 마타 둘다 놓쳤노
-
수학 22 26 30을 다풀어놓고 실수땜에 11점을 날리기 진짜 정신병걸릴거같다.....
-
과탐 2개셨던 분들 -> 사탐 하나 낄 의향 다들 있나요
-
재종 장점 5
재종다니면 어떤점에서 좋은가요? 내년에 수능을 볼 것 같은데 독학할지 재종갈지 고민되네요.
-
경제 사문 만표 73 기원 ㅋㅋ
-
놀랍구만
-
맞팔구 6
잡담태그 잘 다는 사람만 구해요
-
1너무많이 나와서 멘탈 박살남 ㅋㅋㅋㅋ
-
동사 1컷 48이면 진짜 고인거임 하지마셈요 무조건 일반사회해
-
제발
-
과탐 가산점 안 주는 12
대학 있나? 스카이 서성한에서 고대 인문계열은 과탐 가산점 주나?
-
진짜 ㅈ고인것같은데
-
수능때 2틀해서 45 ㅅㅂ 하
-
남자고 키 187cm 82kg면 돼지임??? 헬스하는 몸이고 체지방률...
-
경북대 수의예 0
논술 걍 가지말까? 붙여주면 기어가긴 하는데 3명 뽑기만 하는데 컷 ㅈㄴ 높을듯...
-
거의 과탐급임 ㄹㅇ
-
ㅇㅇ
-
건물 짓기 5
-
그 흔한 거짓말도 못하고
-
그럼 논술 환불해야 하는데
-
내가 많은 걸 바라지 않아요..
-
절대 더이상 꿀통이 아님 지리역사대비 메릿 x
-
저 최저 맞추ㅠ야 해요…
-
다들 점심 뭐드셨어요? 13
저는유부전골과 오랜만에맥주먹었어요 다들맛점
-
내신 1.8~1.9정도 고대 교과 전형 안되겠죠?
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다