(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://9.orbi.kr/0008782522
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보건증은 좀.
-
ㅇㅈ 5
전신샷ㅇㅈ 너는의대가야겠다라는말ㄴㄴ
-
제일 궁금함
-
그냥 ㅇㅈ 32
심심해서요
-
잘생긴 형아들이면 쪽지 보내야함 빨리 급ㅂ해
-
재탕은에바지 1
안할게
-
빈부격자 좆되네..
-
영어 2>1올리분들 어케하셨나요
-
눈 ㅇㅈ 28
-
재테크 ㅇㅈ 0
수집 욕심을 버리니 10만원이 생기다.
-
고도근시들은 안경벗고 헤어스타일 바꾸면 누군지도 잘 못알아보겠는 경우가 허다함뇨...
-
진학사 3칸 1
모집인원 51명 작년 예비 182번까지 돌았던 과 가능성 있을까요?
-
아오기만그만.
-
캬캬
-
근데 요즘 이런 철학적인? 생각이 재밌는 거 같아요 1
외모와 자기관리, 재능과 노력 자식이 미래에 부모를 부양하지 않아도 되는? 낳아준...
-
ㅈㄱㄴ
-
살빼보라<<<< 13
실제로20kg뺐었음 옷잘입어봐라 무신사서옷도사입어봤었음 안경쓰지마라 그래서안경도안씀...
-
시험공부를 더 할 수 있지 않을까
-
너닿 볼까 2
흠
-
진짜 못생긴 사람들은 거의 없는 거 같던데
-
일반못생이면 외향성 리더십 능력 따위로 여자 반하게 만드는 경우 많이 봄 눈에서 하트가 나온다니께
-
2천이상은 받고 하방이 1.5-1.8천이라고 들었는데 궁금
-
ㅋㅋ..
-
그냥 잘씻고 친구랑 놀러다니면서 취미 즐기면 행복하지 않나 연애 안 하는 게...
-
현역 24수능 낮4높4322 재수 2506 백분위100인 1 중간2 211 25수능...
-
변호사 자체가 면허가 아니라 자격증인데 그 말은 변호는 변호사가 아니라도 누구나...
-
ㅜㅜㅜㅜ
-
있었음 지 얼굴 분석하고 코디애들이랑 노가리 까는 게 ㅈㄴ 재밌는데 공짜라고 ㅋㅋㅋㅋㅋㅋ
-
ㄹㅈㄷ황밸 ㄷㄷ 9
-
대체 왜 안들어오고 뻐팅기는건데 그리고 왜 죄다 인문에다 박아놨냐 일단 올라와 그리고 안되면 내려가
-
아무것도 안뜨네..
-
수학 선택과목 6
이제 올라가는 예비고3입니다 모고가 4등급이 나왔습니다 고3 내신이 미적분이라서...
-
메타가 와이라노
-
근데 주변의 모든 정황이 내가 못생겼다는 걸 가르키고있음 ㅆㅍ
-
그것만 하셈 그냥 뚱뚱한데 어케 호감이노 님들 뚱녀 생각해보셈
-
너무 무서워
-
오르비 이메일에 신분증 보내는 방법 말고 더 간단한 방법 아시는 분
-
1. 피부과 가기 2. 키빼몸 최소 100 유지 3. 자기에게 맞는 헤어스타일...
-
최저만 맞추고 대학가려했는데 교과로는 어림없던것같습니다 정시라인좀 봐주세요 ㅠㅠ...
-
어느 정도 예쁘거나 잘생기면 ㅇㅇ 예쁘지 잘생겼지 라고 받아들이는데 못생김의 심연을...
-
공익 있으심? 10
ㅈㄱㄴ
-
남자들이 그런 경향이 좀 있는거같음... 좀 괜찮았으면 여친이 왜 없겠냐
-
키가근데165라고!!!!!!!
-
다는 마땅히 쓸 곳이 없어서 생각 더 해봐야하긴 하는데 가나를 둘 다 5~6칸...
-
[칼럼] 수능 영어를 푸는 가장 효율적인 방법 2편(part 1) 2
수능 영어를 푸는 가장 효율적인 방법 2편 “해석은 다 되는데 왜 답이...
-
가시는분?
-
근데 연애에 외적인 게 막 엄청 큰 건 아닌거같음 10
예) 본인 참고로 본인은 엄마에게 임신 8개월 드립까지 들었음. 살이 너무 불어서..
-
이제자야지
-
'얽다'에서 왔다고 합니다. 성조도 평평으로 일치하고 원래는 face가 아니라...
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ