[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://9.orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
22수능 치고 오랜만에 다시 수능을 응시할까 고민중입니다. 제가 지금 수능 체제의...
-
뭐임..
-
왜 다들 하냐 심특할껄;;
-
사탐 불허 대학교 최하위과 VS 사탐 지원가능 대학교 상위과 나는 전자가 상관없다...
-
늦버기 3
왜케오래잤지
-
어떻게 떨어지는 것만 다 샀냐 ㅋㅋ
-
ㅇㅅㅇ. . .
-
아 공부 뭐하지 1
윤성훈은 오줌터는거마냥 강의를 찔끔찔끔 올려서 진도 나가고싶어도 못나가고 강기분은...
-
개가 물안준다고 음식안준다고 주인한테 욕이나 협박하면 안무섭겠어?
-
전에 영상들은 못 사나요..?
-
개념 인강 듣고 수능특강 푼 다음에 기출을 실모처럼 풀기 가능?? 자이스토리 이런거...
-
Wasd누르면서qe누르는게 부자연스러워졌어
-
뭔가 잘 씻고 옷 잘 빨아입고 해도 뭔가 묘하게 꼬질한 느낌이 안 사라지는 것 같음
-
이거 22개정으로 샀는데 원순열 빠진거빼곤 나머진 동일하죵?
-
용산으로 출발 4
-
같은 푸씨여서
-
정치와 법도 꽤 멋있는데 정법이라고 줄이니까 ㅈㄴ 간지남 약간 도술 이름 같기도 하고 그럼
-
러버 리틀 빗옵 키스 미 킬 미 다이
-
피아노 3
좋네요
-
라이브땜에 ㅇㅂ이나 이런데에 서바,강사컨이 너무 많이 풀려서 그런거도있을듯
-
밥 때 되면 엄마가 나물 반찬 가득에 찌개에 고기에 밥 주고… 설거지는 식기세척기가...
-
다녀보신분 제가 흡연자라 이번에 담배를 가져가고 싶은데 걸리면 퇴소더라구요 가져가면...
-
그건 바로 김준센세…...
-
쿨이 20일이고 별개로 할 때마다 15만덕 드는 줄ㅋㅋ 닉변을 안 해봐서
-
제가 국어가 5-6등급인데 매3비를 공부하려고 샀는데 이게 수능 평가원 기출들이...
-
화법만 봤을때
-
음 6
그럴 수도 있다고 생각
-
중앙vs경희 2
둘다 설캠 한표씩 부탁!
-
ㄹㅇ
-
과외의 딜레마 15
월 300 벌려고 몸을 갈아넣었더니 놀 시간이 없어요 금토일 과외로 삭제 수목 과외...
-
중증외상센터보고 7
의뽕 다시참 ㅎㅎ 슬의생 정주행 한번가야지
-
중증외상센터 드라마 명언 명대사 인상깊은 구절 문장 글귀 0
중증외상센터 드라마 명언 명대사 인상깊은 구절 문장 글귀중증외상센터넷플릭스의 새로운...
-
?고려대학교 융합에너지공학과에서 25학번 아기호랑이를 찾습니다!? 0
?고려대학교 융합에너지공학과에서 25학번 아기호랑이를 찾습니다!? 민족 고대! 강철...
-
ㅈㄱㄴ
-
올해 쌍윤을 하면 죽음뿐 모두 정법사문을 하자
-
기억이 없다.. 현역때 7병씩 퍼마시던 내가 아냐
-
걍 정신병자들 많다
-
키스미 옵붕 키스미 12
키스미 투나잇
-
사문 많이 고였으려나 19
아니겠지..
-
맞팔 구해요 5
전 갈색 테가 싫어요
-
털찐 거 다 빠지고 유압프레스로 누른 것 같음
-
어떰요?
-
사랑한다는 마음으로도~ 14
가질 수 없는 사람이 있어~
-
ㄹㅇ 1
Always awake가 되고 잇는 사람
-
ㅇㅈ 4
5년만에 하는 스위치는 재밌다
-
1. 문기정 베이스랑 문기정 차이가 뭐임?? 2. 어떤 방법으로 글을 읽음? (어떤...
-
여자들한테 둘러싸여서 자야지. . .
-
분교 출신(연세대 원주, 고려대 세종 등)이 본교로 소속변경을 해서 졸업했다면 이것을 말하는 게 맞다고 보시나요, 안해도 된다고 보시나요? 6
분교 출신이 본교 졸업했다고 주장하는 것은 문제가 된다고 보는 게 맞는데,분교로...
-
오늘 고백할예정임 ㅇㅇ
첫번째 댓글의 주인공이 되어보세요.